On the scope of diastereoselective aziridination of various chiral auxiliaries derived N - and O -enones with N -aminophthalimide in the presence of lead tetraacetate

Pei-Wen Duan, Ching-Chen Chiu, Wei-Der Lee, Li Shiue Pan, Uppala Venkatesham, Zheng-Hao Tzeng and Kwunmin Chen*
Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan, ROC

Received 25 December 2007; accepted 22 February 2008

Abstract

The treatment of a range of N - and O -enones derived from various camphor-based chiral auxiliaries A-D with N -aminophthalimide in the presence of lead tetraacetate is described. In general, N-phthalimidoaziridines were obtained with high diastereoselectivities (up to 98% de) and chemical yields (up to 95%) when 10,10 -diphenyl-2,10-camphanediol A derived O-enones with a range of substituents were used under the same reaction conditions. Excellent stereoselectivity was obtained when the N-tosyl camphorpyrazolidinone \mathbf{E} derived acrylate was used. The absolute configuration of the new stereogenic center(s) of the major diastereomer was established by X-ray crystallographic analysis. Chiral auxiliary cleavage was achieved under mild reaction conditions. A model to explain the stereochemical induction is also proposed. © 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The synthesis of aziridine derivatives has received much attention as they are important molecules as key components of many biologically active natural products such as mitomycins, which display potent antitumor and antibiotic activity, and are also useful synthetic intermediates for nitrogencontaining compounds. ${ }^{1}$ In addition, aziridines are highly versatile synthetic precursors and have been used as synthons for chiral amines, amino acids, β-aminosulfonic acids, amino alcohols, alkaloids, and β-lactam antibiotics. ${ }^{2}$ Aziridines are the nitrogen analogues of epoxides and exhibit similar reactivity patterns as electrophilic reagents. ${ }^{3}$ It is not surprising that much effort has been devoted to developing efficient methods for the construction of the constrained three-membered ring system. ${ }^{4}$ Among the many routes that have been developed, the reaction of nitrenes to olefins or carbenes to imines has potential. ${ }^{5}$ The enantioselective and diastereoselective syntheses of non-racemic aziridines have constantly reported in the literature. ${ }^{6}$ The Oppolzer camphorsultam is among the most widely used chiral auxiliary in diastereoselective synthesis. ${ }^{7}$ In continuation of our research interest in

[^0]asymmetric synthesis, four novel camphor-derived auxiliaries: 10,10-diphenyl-2,10-camphanediol A, 10,10-diphenyl-10-methoxy-2-camphanol B, N-phenyl camphorpyrazolidinone \mathbf{C}, and N-tosyl camphorpyrazolidinone \mathbf{D} have been developed and utilized in various asymmetric reactions. ${ }^{8}$ Recently, we have reported the diastereoselective aziridination of N -enones derived from N -phenyl camphorpyrazolidinone with N-aminophthalimide in the presence of lead tetraacetate. ${ }^{9}$ High to excellent stereoselectivities of the desired aziridines were obtained. In addition, the N -inversion phenomena was observed for N-phenyl camphorpyrazolidinone derived N-phthalimidoaziridines. ${ }^{9}$ Based on these studies, we herein report on the scope of the diastereoselective aziridination of N - and O -enones $\mathbf{1 a - 0}$ derived from various camphor-based chiral auxiliaries A-D. Generally, the desired aziridines were obtained with high stereoselectivities and chemical yields under mild reaction conditions. The stereochemical inductions of the reaction were proposed based on the conformational preference of the chiral N - and O-enones in their solid state structures.

2. Results and discussion

The starting chiral $O-\mathbf{1 a}-\mathbf{k}$ and N-enones 11-10 can be easily prepared from the corresponding chiral auxiliaries

A-D by using standard coupling reaction conditions (Fig. 1). With the various N - and O-enones $1 \mathbf{1 a - o}$ in hand, we then investigated the diastereoselective aziridination reaction using N -aminophthalimide in the presence of lead tetraacetate. Vederas et al. have explored the aziridination by using N-enoylbornane[10,2]sultams in the presence of N-aminophthalimide and lead tetraacetate. The corresponding N-phthalimidoaziridines were obtained with 33$95 \%$ de. ${ }^{10}$ In an initial experiment, 10,10-diphenyl-2,10camphanediol derived acrylate 1a was chosen as a probe substrate under the optimal oxidation reaction conditions that were developed previously. ${ }^{9}$ Unsatisfactory results (47% yield and 56% de) were obtained when 1a was treated with N -aminophthalimide and lead tetraacetate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperature (Table 1, entry 1). A slight improvement in both chemical yield and stereoselectivity was observed when the reaction was carried out at $0^{\circ} \mathrm{C}$ (Table 1 , entry 2). The solvent effects were then studied. High stereoselectivity was obtained when the reaction was carried out in CHCl_{3} (Table 1, entry 3). Comparable results were
achieved when $\mathrm{CH}_{3} \mathrm{CN}$ was used (Table 1, entry 4). Satisfactory results were obtained when non-polar solvents (benzene and toluene) were used (Table 1, entries 5 and 6). Further improvements in material yield were observed when the reaction was carried out in THF at $0^{\circ} \mathrm{C}$ (entry 7). It was obvious that THF is a solvent of choice for this reaction. The structure of the major N-phthalimidoaziridine 2a was initially assigned by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and HRMS analyses, and the absolute stereochemistry was assigned as $(1 R)$ by analogy. The diastereomeric excess was deduced from the relevant peak in the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude mixture. The characteristic feature of the C 2 methine proton (camphor numbering) of the corresponding N phthalimidoaziridines 2 provides a convenient way to assign the stereoselectivity. For example, the C 2 methine in 2a appeared at $5.28 \mathrm{ppm}(\mathrm{dd}, J=8.4,3.8 \mathrm{~Hz})$, while it showed up at 5.12 ppm in the minor product 3a. On the other hand, the aziridine ring protons in $\mathbf{2 a}$ showed up at 2.91 (dd, 1 H , $J=7.8,5.4 \mathrm{~Hz}), 2.62(\mathrm{dd}, 1 \mathrm{H}, J=7.8,1.8 \mathrm{~Hz})$, and 2.48 $(\mathrm{dd}, 1 \mathrm{H}, J=5.4,1.8 \mathrm{~Hz}) \mathrm{ppm}$, respectively.

1

A: $R=H$
$A: R=H$
$B: R=M e$

C: $\mathrm{R}=\mathrm{Ph}$
D: $R=T s$

1a: $X_{c}=A, R_{1}=R_{2}=R_{3}=H$
1h: $X_{c}=A, R_{1}=R_{2}=M e, R_{3}=H$
1b: $X_{c}=A, R_{1}=H, R_{2}=M e, R_{3}=H$
1c: $X_{c}=A, R_{1}=H, R_{2}=E t, R_{3}=H$
1d: $X_{c}=A, R_{1}=H, R_{2}=n$-pr, $R_{3}=H$
1e: $\mathrm{X}_{\mathrm{c}}=\mathrm{A}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=i-\mathrm{pr}, \mathrm{R}_{3}=\mathrm{H}$
$1 f: X_{c}=A, R_{1}=H, R_{2}=P h, R_{3}=H$
$1 \mathrm{~g}: X_{c}=A, R_{1}=M e, R_{2}=R_{3}=H$

1i: $X_{c}=A, R_{1}=M e, R_{2}=E t, R_{3}=H$
1j: $X_{c}=A, R_{1}=H, R_{2}=R_{3}=M e$
1k: $X_{c}=B, R_{1}=H, R_{2}=M e, R_{3}=H$
$11: X_{c}=C, R_{1}=R_{2}=R_{3}=H$
1m: $X_{c}=C, R_{1}=H, R_{2}=M e, R_{3}=H$
1n: $X_{c}=D, R_{1}=R_{2}=R_{3}=H$
$10: X_{c}=D, R_{1}=H, R_{2}=M e, R_{3}=H$

Figure 1.

Table 1. Asymmetric aziridination of 10,10-diphenyl-2,10-camphandiol derived acrylate 1a with N-aminopthalimide in the presence of lead tetraacetate ${ }^{\text {a }}$

[^1]Various 10,10-diphenyl-2,10-camphanediol derived O enones with α-, β-, α, β-di, and β, β-disubstituent(s) were then subjected to the optimal reaction conditions. Moderate stereoselectivities were obtained when acryoyl O-enones 1b was used (Table 2, entry 1). High stereoselectivities and material yields were obtained when other β-substituents (ethyl-, n-propyl-, and isopropyl-) were used (Table 2, entries 2-4). The electron-rich O-cinnamoyl enone $\mathbf{1 f}$ was investigated and the desired products were isolated with 75% yield and 80% de (Table 2, entry 5). The stereoselectivity dropped significantly when an α-substituent is present. The α-substituent effect on the yield has been observed before. ${ }^{10}$ The α-substituent effect may come from the deviation of dihedral angle from the planar geometry of the enone. The α-substituent effect does not influence the reactivity in the case of 10,10 -diphenyl-2,10-camphanediol derived O-enones. However, it does affect the stereoselectivity. Thus, the use of O-methacryloyl enone $\mathbf{1 g}$ gave only moderate stereoselectivity ($\mathbf{2 g}: \mathbf{3 g}=61: 39$) (entry 6). Interestingly, the selectivity rebounds with the presence of an additional β-substituent. Toward this end, high stereoselectivities were obtained when α, β-dimethyl $\mathbf{1 h}$ and α-methyl β ethyl $\mathbf{1 i}$ substrates were used under the same reaction conditions (Table 2, entries 7 and 8). Similar result was observed when β, β-dimethyl substituent $\mathbf{1} \mathbf{j}$ was used (Table 2 , entry 9). A similar observation was noted when N-phenyl camphorpyrazolidinone derived N-enone was used. ${ }^{9}$ The absolute stereochemistries of the major isomeric products of 2b-f were confirmed by single crystal X-ray analyses. Next,
the use of 10,10-diphenyl-10-methoxy-2-camphanol B derived O-enone was also studied. The desired product $\mathbf{2 k}$ was obtained with 74% de in favoring the $(1 R, 2 S)$-configuration of the newly generated aziridine ring (Table 2, entry 10). The use of N-phenyl camphorpyrazolidinone \mathbf{C} derived N-enones $\mathbf{1 1}$ and $\mathbf{1 m}$ gives the desired aziridine with high selectivities (Table 2, entries 11 and 12). ${ }^{9}$ Further, the treatment of N-tosyl camphorpyrazolidinone \mathbf{E} derived acrylate $1 \mathbf{n}$ with N-aminophthalimide in the presence of lead tetraacetate afforded $\mathbf{2 n}$ with $>95 \%$ de (Table 2, entry 13).

As mentioned, Vederas et al. have reported the aziridination of N-enoylbornane[10,2]sultams with N-aminophthalimide in the presence of lead tetraacetate. The corresponding N-phthalimidoaziridines were obtained with $33-95 \%$ de in good to high material yields. ${ }^{10}$ Comparison of the aziridination of the camphorsultam derived N-enones and the current results indicate auxiliaries $\mathbf{A}-\mathbf{D}$ providing better stereofacial discrimination. For example, the aziridination of camphorsultam derived acrylate $\left(\mathrm{R}_{1}=\right.$ $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$) gave the corresponding N-phthalimidoaziridines with 78% de, while with $88 \%,>90 \%$, and $>90 \%$ de, respectively when auxiliaries \mathbf{A}, \mathbf{C}, and \mathbf{D} derived acrylates were used (Table 1, entry 7 and Table 2, entries 11 and 13). Moreover, for auxiliaries $\mathbf{A}-\mathbf{D}$ derived from N-crotonyl substrates ($\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{H}$), the diastereoselectivities (64-90\% de; Table 2, entries 1, 10, 12, and 14) are also better than those of N-crotonyl camphorsultam (33% de).

Table 2. Asymmetric aziridination of various enones $\mathbf{1 b}-\mathbf{o}$ with N-aminopthalimide in the presence of lead tetraacetate ${ }^{\mathrm{a}}$

2b-o
3b-o

Entry	Substrate	Time (min)	Yield ${ }^{\text {b }}$ (\%)	Ratio (2:3) ${ }^{\text {c }}$	Configuration ${ }^{\text {d }}$
1	1b $\mathrm{Xc}=\mathrm{A}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{H}$	40	90	82:18	$(1 R, 2 S)$
2	1c $\mathrm{Xc}=\mathrm{A}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Et}, \mathrm{R}_{3}=\mathrm{H}$	5	95	93:07	$(1 R, 2 S)^{\text {e }}$
3	1d $\mathrm{Xc}=\mathrm{A}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=n-\mathrm{Pr}, \mathrm{R}_{3}=\mathrm{H}$	5	90	93:07	$(1 R, 2 S)$
4	1e $\mathrm{Xc}=\mathrm{A}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=i-\mathrm{Pr}, \mathrm{R}_{3}=\mathrm{H}$	5	95	95:05	$(1 R, 2 S)$
5	1f $\mathrm{Xc}=\mathrm{A}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Ph}, \mathrm{R}_{3}=\mathrm{H}$	15	75	90:10	$(1 R, 2 S)$
6	$\mathbf{1 g X c}=\mathrm{A}, \mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$	10	95	61:39	$(1 R)^{\text {e }}$
7	1h $\mathrm{Xc}=\mathrm{A}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{H}$	5	95	95:05	$(1 R, 2 S)$
8	1i $\mathrm{Xc}=\mathrm{A}, \mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{Et}, \mathrm{R}_{3}=\mathrm{H}$	5	95	95:05	$(1 R, 2 S)^{\text {e }}$
9	$\mathbf{1} \mathbf{j} \mathrm{Xc}=\mathrm{A}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{Me}$	10	70	05:95	$(1 S)^{\mathrm{e}}$
10	$\mathbf{1 k} \mathrm{Xc}=\mathrm{B}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{H}$	5	90	87:13	$(1 R, 2 S)^{\mathrm{e}}$
$11^{\text {f }}$	$11 \mathrm{Xc}=\mathrm{C}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$	5	94	>95:05	$(1 R)$
$12^{\text {f }}$	$\mathbf{1 m ~ X c}=\mathrm{C}, \mathrm{R}_{1}=\mathrm{H} \mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{H}$	5	90	>95:05	$(1 R, 2 S)$
13	1n $\mathrm{Xc}=\mathrm{D}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$	10	50	>95:05	$(1 R)$
14	$1 \mathrm{l} \mathrm{Xc}=\mathrm{D}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{H}$	10	53	>95:05	$(1 R, 2 S)^{\mathrm{e}}$

${ }^{\text {a }}$ Unless otherwise noted, all reactions were performed using chiral enones (0.2 g), N-aminophthalimide (1.5 equiv), $\mathrm{Pb}(\mathrm{OAc})_{4}(1.6 \mathrm{equiv})$ in $\mathrm{THF}(5.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$.
${ }^{\mathrm{b}}$ Total isolated yield (2 and 3).
${ }^{\mathrm{c}}$ Diastereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR analysis of relevant peaks of crude products.
${ }^{d}$ Absolute stereochemistry of the newly generated stereogenic centers deduced by single X-ray crystal analyses.
${ }^{\mathrm{e}}$ Absolute stereochemistry was assigned by analogy.
${ }^{\mathrm{f}}$ See Ref. 9.

An interesting N -interconversion phenomena of N phthalimidoaziridine was observed by both us and Atkinson et al. ${ }^{9,11}$ The kinetically formed trans-aziridine $\mathbf{2 l}$ inverts at the aziridine nitrogen atom to the thermodynamically preferred cis-aziridine. Similar phenomena were observed for N-methacryloyl 10,10-diphenyl-2,10-camphanediol derived aziridine $\mathbf{2 g}$. Thus, the isolated pure diastereomer of $\mathbf{2 g}$ (flash column chromatography, E. Merck Silica Gel $60, R_{\mathrm{f}}=0.4$, hexanes/ethyl acetate $=4: 1$) slowly converts into its less polar N -invertomer $\left(R_{\mathrm{f}}=0.6\right.$, hexanes/ethyl acetate $=4: 1$) and reached an equilibrium to give a $3: 2$ ratio at ambient temperature over 30 min . The ${ }^{1} H$ NMR spectra of both diastereomers are identical in CDCl_{3}. It is pertinent to note that N-tosyl camphorpyrazolidinone derived acrylate $\mathbf{1 n}$ produced exclusively one diastereomer with moderate yield (Table 2, entry 13). The absolute configuration of the newly generated stereogenic center was established as $(1 R)$ by single X-ray crystal analysis. The rapid equilibrium of N -interconversion was also observed for $1 \mathrm{n}\left(R_{\mathrm{f}}=0.1\right.$ and 0.3 , hexanes/ethyl acetate $=4: 1$). To complete one cycle of the chiral auxiliary, the initial adduct was subjected to deacylation conditions. Exposure of $\mathbf{2 a}$ with NaOMe in methanol at ambient temperature provided the desired 2-carboxyl aziridine derivative $\mathbf{4 a}(67 \%)\left\{[\alpha]_{\mathrm{D}}=+109.5\right.$ (c 1, CHCl_{3}) $\}$ and 10,10 -diphenyl-2,10-camphanediol \mathbf{A} was recovered in 85% yield (Scheme 1).

The aziridination reaction using N -aminophthalimide in the presence of lead tetraacetate proceeded with a non-chelation fashion. The stereochemical induction can be rationalized based on the conformational structures of the auxiliaries derived N - and O -enones (Fig. 2). The relationship of reaction rate/stereoselectivity and geometry arrangement of camphorsultam conjugated N-enones have
been examined by both Oppolzer ${ }^{12}$ and Curran. ${ }^{13}$ For amide derived N-enone functionality, the s-cis conformation dominates with no substituent and β-substituents while favoring the s-trans disposition if an α-substituent is present. For example, α, β-substituted N-enones 11 energetically favor s-trans geometry, while for β-substituted N-enone $\mathbf{1 m}$, planar s-cis conformation dominate. ${ }^{9,13,14}$ In contrast to the amide N-enone C and D system, the ester linkage O-enones exhibit different conformational behaviors. The s-trans conformation is energetically favored for the unsubstituted, β-substituent, and an α, β-disubstituted of exo-10,10-diphenyl-2, 10 -camphane diol \mathbf{A} derived O enones. ${ }^{15}$ This can be confirmed by the single X-ray crystal analyses of compounds $\mathbf{1 b} \mathbf{- c}$ and $\mathbf{1 g}-\mathbf{h}$. Interestingly, for β, β-disubstituted O-enone $\mathbf{1 j}$, the s-cis conformation is energetically favored as indicated by the single X-ray crystal analysis. Similar to the N-phenyl camphorpyrazolidinone \mathbf{C} derived N-enones, the bulky N-acetoxyaminophthalimide comes from the less hindered bottom face. For $1 \mathbf{a}-\mathbf{i}$, the attack is from the $\mathrm{C} \alpha$ re-face, while from the opposite $s i$-face for $\mathbf{1 j}$ to give the observed stereoisomers.

It is important to note that the amide carbonyl group orients away from the sulfonyl group in N-tosyl camphorpyrazolidinone \mathbf{D} derived acrylate $\mathbf{1 n}$. This is to minimize the dipole-dipole repulsions between the sulfonyl and carbonyl groups. The planar s-cis conformation is favored in the solid state (the dihedral angle of $\mathrm{C}=\mathrm{O}-\mathrm{C}=\mathrm{C}$ is -4.37). The attack of an N-acetoxyaminophthalimide intermediate from the $\mathrm{C} \alpha$ re-face gives the desired major diastereomer. The low levels of asymmetric induction were obtained (Table 2, entry 6) when 1 g was used, may be due to the dihedral angle deviating from planarity (the dihedral angle of $\mathrm{C}=\mathrm{O}-\mathrm{C}=\mathrm{C}$ is 152.5).

Scheme 1.

Figure 2. Proposed mechanism for the diastereoselective aziridination of various chiral O - and N-enones derived from camphor-based auxiliaries.

3. Conclusion

In conclusion, the diastereoselective aziridinations of various N - and O-enones derived from various chiral auxiliaries have been demonstrated. The treatment of the O and N -enones with N -aminophthalimide in the presence of lead tetraacetate afforded the corresponding N phthalimidoaziridines with high diastereoselectivities (up to $98 \% \mathrm{de}$) and chemical yields (up to 95%). The diastereomeric excess can be determined by the relevant peak in the ${ }^{1} \mathrm{H}$ NMR spectrum (C 2 methine proton of the camphor scaffold) of the crude mixtures. The stereochemical bias can be explained by the conformational preference of the starting enones in the solid states. For exo-10,10-diphen-yl-2,10-camphanediol A derived O-enones $\mathbf{1 a}$-i, the addition of the N-acetoxyaminophthalimide intermediate attacks from the C α re-face, while from the opposite $s i$-face for $\mathbf{1} \mathbf{j}$ to give the observed stereoisomers. On the other hand, for N-tosyl camphorpyrazolidinone \mathbf{D} derived N enones, the oxidation reagent attack from the $\mathrm{C} \alpha$ re-face afforded the desired major aziridine.

4. Experimental

4.1. General methods

All reagents were used as purchased from commercial suppliers without further purification. NMR spectra were recorded on a Varian Gemini-2000 200 NMR and Bruker Avance 400 NMR spectrometer (200 and 400 MHz for ${ }^{1} \mathrm{H}$, and 50 and 100 MHz for ${ }^{13} \mathrm{C}$). Chemical shifts are reported in $\delta \mathrm{ppm}$ referenced to an internal TMS standard for ${ }^{1} \mathrm{H}$ NMR and chloroform- $d(\delta 77.0)$ for ${ }^{13} \mathrm{C}$ NMR. Optical rotations were measured on a JASCO P-1010 polarimeter. EI mass spectra were recorded on Finnigan TSQ-700 at an ionizing energy of 70 eV and HRMS spectra were recorded on MAT-95XL HRMS. Routine monitoring of reactions was performed using silica gel, glass-backed TLC plates (Merck Kieselgel 60 F254) and visualized by UV light (254 nm). Solutions were evaporated to dryness under reduced pressure with a rotary evaporator and the residue was purified by flash column chromatography on silica gel (230-400 mesh) with the indicated eluents. Air and/or moisture sensitive reactions were performed under the usual inert atmosphere conditions.

Crystallographic data for the structures in this paper have been deposited at the Cambridge Crystallographic Data Center and allocated the deposit numbers CCDC 655358-655366. ${ }^{16}$

4.2. General procedure for the synthesis of compounds $1 a-k$ and $1 \mathrm{n}-\mathrm{o}$

Under an N_{2} atmosphere exo-10,10-diphenyl-2,10-camphanediol ($1.0 \mathrm{~g}, 3.1 \mathrm{mmol}$) and $\mathrm{NaH}(110 \mathrm{mg}, 4.6 \mathrm{mmol})$ in dry THF (30 mL) were stirred at $0^{\circ} \mathrm{C}$ for 20 min . This was added to acryloyl chloride ($0.39 \mathrm{~mL}, 4.6 \mathrm{mmol}$) dropwise and continued stir for 30 min at $0^{\circ} \mathrm{C}$. The reaction mixture was then quenched with water (75 mL) and extracted with dichloromethane $(3 \times 50 \mathrm{~mL})$. The com-
bined organic extracts were dried over brine, dried over MgSO_{4}, and concentrated in vacuo. The obtained crude products were subjected to flash column chromatography eluted with hexanes/ethyl acetate $4: 1$ to afford product 1a as a white solid ($1.03 \mathrm{~g}, 88 \%$).
4.2.1. Acrylic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 1a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.07(\mathrm{~m}$, $6 \mathrm{H}), 6.19-5.70(\mathrm{~m}, 3 \mathrm{H}), 5.24(\mathrm{dd}, 1 \mathrm{H}, J=8.1,3.5 \mathrm{~Hz})$, $3.80(\mathrm{~s}, 1 \mathrm{H}), 2.41-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.50(\mathrm{~m}, 8 \mathrm{H}), 1.24$ $1.11(\mathrm{~m}, 1 \mathrm{H}), 0.64(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 163.7, 148.9, 143.4, 130.5, 128.5, 128.0, 127.9, 126.9, $126.5,126.2,126.0,81.8,81.3,59.2,51.3,47.7,38.4,31.0$, 26.9, 24.4, 22.5; HRMS (EI): calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{3}$, 376.2038; found, 376.2049.
4.2.2. But-2-enoic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 1b. Yield 78\%; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.61$ (m, 4H), 7.30-7.05 $(\mathrm{m}, 6 \mathrm{H}), 6.68(\mathrm{dq}, 1 \mathrm{H}, J=11.2,1.8 \mathrm{~Hz}), 5.56(\mathrm{dq}, 1 \mathrm{H}$, $J=15.4, \quad 1.8 \mathrm{~Hz}), 5.20(\mathrm{dd}, 1 \mathrm{H}, ~ J=8.1,3.7 \mathrm{~Hz}), 3.93$ $(1 \mathrm{H}, \mathrm{s}), 2.40-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.45(\mathrm{~m}, 10 \mathrm{H}), 1.26-1.07$ $(\mathrm{m}, 2 \mathrm{H}), 0.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $163.9,148.9,144.6,143.4,128.4,127.9,127.8,126.8$, $126.4,126.1,126.0,125.9,122.1,81.3,81.3,59.0,51.2$, 47.6, 38.5, 30.8, 26.9, 24.4, 22.5, 17.7; HRMS (EI): calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{3}, 390.2195$; found, 390.2202 .
4.2.3. Pent-2-enoic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 1c. Yield 73%; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.07$ $(\mathrm{m}, 6 \mathrm{H}), 6.81-6.67(\mathrm{dt}, 1 \mathrm{H}, J=14.7,6.5 \mathrm{~Hz}), 5.56(\mathrm{~d}$, $1 \mathrm{H}, J=14.7 \mathrm{~Hz}), 5.19(\mathrm{dd}, 1 \mathrm{H}, J=8.0,4.0 \mathrm{~Hz}), 3.94(\mathrm{~s}$, $1 \mathrm{H}), 2.38-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.23-1.47(\mathrm{~m}, 10 \mathrm{H}), 1.23-1.10$ $(\mathrm{m}, 1 \mathrm{H}), 1.03(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 0.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.9,148.9,143.6,137.0,128.5$, $128.3,127.9,126.9,126.5,126.2,126.1,81.6,81.4,59.1$, 51.3, 47.8, 38.6, 31.0, 27.0, 24.5, 22.6, 14.2, 12.1; HRMS (EI): calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{3}, 404.2351$; found, 404.2357; Crystal data for $1 \mathbf{c}$ at $25^{\circ} \mathrm{C}: \mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{3}, M=404.54$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, \quad a=6.931(4) A, \quad b=13.806(5) \AA, \quad c=$ 23.533(5) $\AA, \quad V=2252.0(15) \AA^{3}, \quad Z=4, \quad D_{\mathrm{c}}=1.193 \mathrm{Mg} /$ $\mathrm{m}^{3}, \mu=0.08 \mathrm{~mm}^{-1}, 2293$ reflections, 272 parameters, $R=0.050, R w=0.146$.
4.2.4. Hex-2-enoic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 1d. Yield 88%; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.05$ $(\mathrm{m}, 6 \mathrm{H}), 6.67(\mathrm{dt}, 1 \mathrm{H}, J=15.6,7.0 \mathrm{~Hz}), 5.54(\mathrm{dt}, 1 \mathrm{H}$, $J=15.6,1.6 \mathrm{~Hz}), 5.20(\mathrm{dd}, 1 \mathrm{H}, J=7.8,3.8 \mathrm{~Hz}), 3.92(\mathrm{~s}$, $1 \mathrm{H}), 2.40-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.27(\mathrm{~m}, 9 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H})$, $1.24-1.08(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}), 0.62(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,164.0,149.3,148.8$, $143.4,128.4,127.8,126.7,126.4,126.1,126.0,120.8,81.2$, $60.2,59.0,51.2,47.6,38.4,33.9,30.9,26.9,24.4,22.5$, 21.0, 20.8, 14.0, 13.3; HRMS (EI): calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{3}$, 418.2508; found, 418.2505.
4.2.5. 4-Methyl-pent-2-enoic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 1e. Yield $76 \% ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.63(\mathrm{~m}, 4 \mathrm{H})$,
7.26-7.06 (m, 6H), $6.65(\mathrm{dd}, 1 \mathrm{H}, J=15.7,6.8 \mathrm{~Hz}), 5.47(\mathrm{dd}$, $1 \mathrm{H}, J=15.7,1.3 \mathrm{~Hz}$), 5.19 (dd, $1 \mathrm{H}, J=7.9,3.9 \mathrm{~Hz}$), 3.92 $(\mathrm{s}, 1 \mathrm{H}), 2.06-1.46(\mathrm{~m}, 6 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.31-0.85(\mathrm{~m}$, $2 \mathrm{H}), 1.01(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}),, 0.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.6,155.8,149.0,143.5,128.5$, $127.9,126.9,126.5,126.3,126.1,118.0,81.5,81.4,59.2$, 51.3, 47.8, 38.5, 31.0, 30.9, 27.0, 24.5, 22.6, 21.1, 21.0; HRMS (EI): calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{3}, 418.2508$; found, 418.2517.
4.2.6. 3-Phenyl-acrylic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 1f. Yield 80%; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.50-$ $7.36(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.05(\mathrm{~m}, 6 \mathrm{H}), 5.28(\mathrm{dd}, 1 \mathrm{H}, J=7.7$, $4.1 \mathrm{~Hz}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 2.43-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.50(\mathrm{~m}$, $5 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.26-0.85(\mathrm{~m}, 2 \mathrm{H}), 0.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.9,149.2,148.9,144.6$, $143.5,143.3,128.4,127.9,127.8,126.8,126.4,126.1$, $126.0,125.9,122.1,81.6,81.3,59.0,51.2,47.6,38.5,38.3$, $31.0,30.9,26.9,24.4,22.5,22.4,20.7,17.7$; HRMS (EI): calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{O}_{3}, 452.2351$; found, 452.2362 .
4.2.7. 2-Methyl-acrylic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 1g. Yield 83%; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.27-$ $7.01(\mathrm{~m}, 6 \mathrm{H}), 5.83(\mathrm{~d}, 1 \mathrm{H}, \quad J=1.1 \mathrm{~Hz}), 5.46(\mathrm{~d}, 1 \mathrm{H}$, $J=1.1 \mathrm{~Hz}), 5.27(\mathrm{dd}, 1 \mathrm{H}, J=8.0,3.8 \mathrm{~Hz}), 3.83(\mathrm{~s}, 1 \mathrm{H})$, $2.41-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.49(\mathrm{~m}, 5 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.54$ $(\mathrm{s}, 3 \mathrm{H}), 1.26-1.11(\mathrm{~m}, 1 \mathrm{H}), 0.64(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \delta 165.0,148.9,143.4,136.1,128.5$, $127.9,126.9,126.5,126.2,126.1,125.1,81.8,81.4,59.2$, 51.3, 47.7, 38.5, 31.0, 27.0, 24.4, 22.6, 18.3; HRMS (EI): calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{3}, 390.2195$; found, 390.2197.
4.2.8. 2-Methyl-but-2-enoic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 1h. Yield $57 \% ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.60(\mathrm{~m}, 4 \mathrm{H})$, $7.27-7.06(\mathrm{~m}, 6 \mathrm{H}), 6.55(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{dd}, 1 \mathrm{H}, J=8.0$, $3.6 \mathrm{~Hz}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 2.40-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.42(\mathrm{~m}$, $11 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) 1.29-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8$, 148.9, 143.5, 136.9, $128.5,128.3,127.8,126.8,126.4,126.2,126.1,81.5,81.4$, $59.1,51.2,47.7,38.6,31.0,27.0,24.5,22.6,14.2,12.1$; HRMS (EI): calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{3}, 404.2351$; found, 404.2375.
4.2.9. 2-Methyl-pent-2-enoic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 1i. Yield $95 \% ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.61(\mathrm{~m}, 4 \mathrm{H})$, $7.25-7.06(\mathrm{~m}, 6 \mathrm{H}), 6.43(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{dd}, 1 \mathrm{H}, J=7.9$, $3.7 \mathrm{~Hz}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 2.40-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.18-1.78(\mathrm{~m}$, $5 \mathrm{H}), 1.75-1.20(\mathrm{~m}, 8 \mathrm{H}), 1.17-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{t}, 3 \mathrm{H}$, $J=7.5 \mathrm{~Hz}$), $0.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $166.0,148.9,143.8,143.5,128.4,127.8,126.8,126.6$, $126.4,126.2,126.0,81.5,81.3,59.1,51.2,47.7,38.5,31.0$, 26.9, 24.5, 22.5, 21.7, 12.8, 12.2; HRMS (EI): calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{3} 418.2508$; found, 418.2489 .
4.2.10. 3-Methyl-but-2-enoic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 1 j . Yield $82 \% ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77-7.63(\mathrm{~m}, 4 \mathrm{H})$, $7.27-7.06(\mathrm{~m}, 6 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 5.14(1 \mathrm{H}, \mathrm{dd}, J=7.9$,
$3.9 \mathrm{~Hz}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 2.40-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.92(3 \mathrm{H}, \mathrm{d}$, $J=1.2 \mathrm{~Hz}), 1.82(\mathrm{~d}, 3 \mathrm{H}, J=1.4 \mathrm{~Hz}), 2.06-1.46(\mathrm{~m}, 4 \mathrm{H})$, $1.52(\mathrm{~s}, 3 \mathrm{H}), 1.27-0.85(\mathrm{~m}, 2 \mathrm{H}), 0.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.0,157.5,149.0,143.6,128.5$, $127.8,126.9,126.3,126.2,115.2,81.3,80.5,59.1,51.2$, 47.8, 38.6, 30.9, 27.1, 27.0, 24.5, 22.6, 20.0; HRMS (EI): calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{3}, 404.2351$; found, 404.2356; Crystal data for $1 \mathbf{j}$ at $25^{\circ} \mathrm{C}: \mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{3}, M=404.54$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=12.621(3) \AA, b=17.873(6) \AA, c=20.580(4) \AA$, $V=4642.3(20) \AA^{3}, \quad Z=8, \quad D_{\mathrm{c}}=1.158 \mathrm{Mg} / \mathrm{m}^{3}, \quad \mu=$ $0.07 \mathrm{~mm}^{-1}, 4521$ reflections, 542 parameters, $R=0.042$, $R w=0.093$.
4.2.11. But-2-enoic acid 1-(methoxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 1k. Yield $58 \% ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.48$ $(\mathrm{m}, 2 \mathrm{H}), 7.34-7.19(\mathrm{~m}, 6 \mathrm{H}), 6.21-6.20(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, 1 \mathrm{H}, J=7.7,3.1 \mathrm{~Hz}), 2.80-2.67$ $(\mathrm{m}, 4 \mathrm{H}), 1.85-1.39(\mathrm{~m}, 6 \mathrm{H}), 1.27-1.23(\mathrm{~m}, 4 \mathrm{H}), 0.95-0.77$ $(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.0,145.0$, $140.0,139.4,131.6,129.5,127.3,126.8,126.7,126.6$, $122.8,88.0,80.1,60.9,60.2,52.4,50.4,48.7,39.2,31.4$, $25.2,23.6,23.0,22.5,17.7,14.0,13.9$.
4.2.12. 4-Acryloyl-10,10-dimethyl-3-(toluene-4-sulfonyl)-3,4-diaza-tricyclo[5.2.1.0 ${ }^{1,5}$ decan-2-one 1 n . Yield 90%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86$ (br s, 2H), 7.37 (d, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}$), 6.72 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), 6.47 (dd, $1 \mathrm{H}, J=16.8$, $1.4 \mathrm{~Hz}), 5.80(\mathrm{dd}, 1 \mathrm{H}, J=11.7,1.4 \mathrm{~Hz}), 3.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.79(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.60(\mathrm{~m}, 5 \mathrm{H})$, 1.17-1.12 (m, 1H), $1.03(\mathrm{~s}, 6 \mathrm{H}), 0.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.0,165.0,146.3,134.6,130.0$, $129.0,127.7,70.2,60.1,52.7,47.4,34.8,28.9,26.9,21.8$, 20.3, 19.9; HRMS (EI): calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}, 388.1458$; found, 388.1456. Crystal data for $\mathbf{1 n}$ at $25^{\circ} \mathrm{C}: \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, $M=388.47$, monoclinic, $P 2_{1} 2_{1} 2_{1}, a=12.4010(7) \AA, b=$ $6.6250(4) \AA, c=23.8760(17) \AA, \quad V=1961.6(2) \AA^{3}, Z=4$, $D_{\mathrm{c}}=1.315 \mathrm{Mg} / \mathrm{m}^{3}, \quad \mu=0.193 \mathrm{~mm}^{-1}, \quad 12,175$ reflections, 245 parameters, $R=0.1886, R w=0.2369$.
4.2.13. 4-Methylacryloyl-10,10-dimethyl-3-(toluene-4-sulf-onyl)-3,4-diaza-tricyclo[5.2.1.0 ${ }^{1,5}$ [decan-2-one 10. Yield $80 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~m}, 2 \mathrm{H}), 7.37$ $(\mathrm{d}, 2 \mathrm{H} J=8.0 \mathrm{~Hz}), 7.02(\mathrm{~m}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}$, $1 \mathrm{H}), 2.78(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.86(\mathrm{~m}$, $7 \mathrm{H}), 1.17(\mathrm{~s}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 6 \mathrm{H}), 0.54(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.0,165.6,146.1,143.1,134.6$, $129.0,128.9,70.1,122.1,52.6,47.3,33.8,28.8,26.8,21.7$, 20.2, 19.9, 18.2; HRMS (EI): calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, 402.1613; found, 402.1622 .

4.3. Typical procedure for the synthesis of N phthalimidoaziridines 2 and 3

To a solution of exo-10,10-diphenyl-2,10-camphanediol derived acrylate $1 \mathbf{1 a}(0.20 \mathrm{~g}, 0.53 \mathrm{mmol})$ and N-aminophthalimide $(0.12 \mathrm{~g}, 0.80 \mathrm{mmol})$ in dry THF $(5.0 \mathrm{~mL})$ was added lead tetraacetate $(0.38 \mathrm{~g}, 0.85 \mathrm{mmol})$ in one portion under an N_{2} atmosphere at $0^{\circ} \mathrm{C}$. The mixture was allowed to stir for 15 min and then quenched with water $(25 \mathrm{~mL})$ and extracted with dichloromethane $(3 \times 25 \mathrm{~mL})$. The organic layers were separated and washed with brine, dried
over MgSO_{4}, and concentrated in vacuo to give the crude products. Purification by flash column chromatography eluted with hexanes/ethyl acetate $=4: 1$ yielded the desired aziridines $\mathbf{2 a}$ and $3 \mathrm{a}(0.26 \mathrm{~g} ; 90 \%$, ratio of diastereomers $94: 06)$ as a white solid.
4.3.1. 1-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-aziridine-(2R)carboxylic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 2a. ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.00-7.51(\mathrm{~m}, 8 \mathrm{H}), 7.32-7.08(\mathrm{~m}, 6 \mathrm{H}), 5.28(\mathrm{dd}$, $1 \mathrm{H}, J=8.4,3.8 \mathrm{~Hz}), 4.01(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{dd}, 1 \mathrm{H}, J=7.8$, $5.4 \mathrm{~Hz}), 2.62(\mathrm{dd}, 1 \mathrm{H}, J=7.8,1.8 \mathrm{~Hz}), 2.48(\mathrm{dd}, 1 \mathrm{H}$, $J=5.4,1.8 \mathrm{~Hz}), 2.39-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.51(\mathrm{~m}, 8 \mathrm{H})$, 1.29-0.85 (m, 1H), $0.66(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.6,164.3,148.9,143.5,134.4,134.3,134.0$, $130.0,128.6,128.4,128.1,128.0,126.9,126.8,126.5$, $126.2,125.9,123.6,123.4,123.0,82.7,60.3,59.1,51.5$, 51.3, 47.7, 39.5, 38.3, 36.5, 31.0, 26.9, 24.4, 22.5, 22.4, 20.9, 14.1; HRMS (EI): calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}, 536.2311$; found, 536.2308.
4.3.2. 1-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-(3S)-methyl-aziridine-($2 R$)-carboxylic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 2b. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-7.59(\mathrm{~m}, 8 \mathrm{H}), 7.28-7.10(\mathrm{~m}$, $6 \mathrm{H}), 5.34-5.08(\mathrm{dd}, 1 \mathrm{H}, ~ J=8.0,3.6 \mathrm{~Hz}), 3.62(\mathrm{~s}, 1 \mathrm{H})$, $3.12(\mathrm{~d}, 1 \mathrm{H}, ~ J=5.2 \mathrm{~Hz}), 2.88(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~d}, 1 \mathrm{H}$, $J=4.8 \mathrm{~Hz}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.53$ $(\mathrm{m}, 7 \mathrm{H}), 1.42-0.86(\mathrm{~m}, 7 \mathrm{H}), 0.70-0.59(\mathrm{~m}, ~ 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.7,165.4,164.7,164.4$, $149.3,143.7,143.1,134.3,133.9,130.4,130.3,128.6$, $128.5,128.0,126.9,126.8,126.5,126.3,126.1,125.9$, $123.3,122.9,82.7,82.3,81.3,81.2,59.3,59.1,51.5,51.4$, 47.7, 44.8, 44.1, 43.1, 38.3, 37.2, 31.3, 31.1, 26.9, 24.6, 22.5, 22.4, 16.0, 12.2; HRMS (EI): calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}$, 550.2468; found, 550.2477; Crystal data for $\mathbf{2 b}$ at $25^{\circ} \mathrm{C}$: $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}$; $\quad M=550.65$, monoclinic, $\quad P 2_{1} 2_{1} 2_{1}, \quad a=$ $13.1296(18) \AA, \quad b=14.529(9) \AA, \quad c=15.1369(12) \AA, \quad V=$ 2881.3(18) $\AA^{3}, Z=4, D_{\mathrm{c}}=1.269 \mathrm{Mg} / \mathrm{m}^{3}, \mu=0.09 \mathrm{~mm}^{-1}$, 5472 reflections, 738 parameters, $R=0.061, R w=0.118$.
4.3.3. 1-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-(3S)-ethyl-aziridine-($2 R$)-carboxylic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 2c. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.59(\mathrm{~m}, 8 \mathrm{H}), 7.27-7.10(\mathrm{~m}$, $6 \mathrm{H}), 5.13-5.07(\mathrm{dd}, 1 \mathrm{H}, J=8.1,3.5 \mathrm{~Hz}), 3.68(\mathrm{~s}, 1 \mathrm{H})$, $2.96(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 2.34-2.16(\mathrm{~m}$, $1 \mathrm{H}), 1.98-1.42(\mathrm{~m}, 9 \mathrm{H}), 1.29-0.83(\mathrm{~m}, 5 \mathrm{H}), 0.79-0.65(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.8,164.4,149.3$, $143.1,134.3,133.9,130.3,130.2,128.6,128.4,128.0$, $126.9,126.8,126.4,126.3,126.1,125.8,123.3,122.9,82.8$, 81.3, 59.1, $51.5,49.9,47.7,43.7,37.2,31.2,26.9,24.5$, 24.0, 22.5, 22.4, 11.3, 10.2; HRMS (EI): calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5}, 564.2624$; found, 564.2636; Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 74.45; H, 6.43; N, 4.96. Found: C, 74.78; H, 6.33; N, 4.67.
4.3.4. 1-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-(3S)-propyl-aziridine-($2 R$)-carboxylic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 2d. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-7.60(\mathrm{~m}, 8 \mathrm{H}), 7.27-7.09(\mathrm{~m}$, $6 \mathrm{H}), 5.11(\mathrm{dd}, 1 \mathrm{H}, J=8.0,3.6 \mathrm{~Hz}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 2.99(\mathrm{~m}$,
$1 \mathrm{H}), 2.71(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 2.34-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.97-$ $1.41(\mathrm{~m}, 11 \mathrm{H}), 1.17-0.64(\mathrm{~m}, 5 \mathrm{H}), 0.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.8,164.4,149.3,143.2,134.3$, $134.0,130.2,128.6,128.5,128.0,126.9,126.8,126.5$, $126.3,125.9,123.3,122.9,82.9,81.4,59.2,51.5,48.6$, 47.7, 44.0, 37.2, 33.0, 31.2, 26.9, 24.5, 22.5, 19.4, 13.9; HRMS (EI): calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5}$ 578.2781. Found 578.2795. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 74.72; H, 6.62; N, 4.84. Found: C, 74.74; H, 6.40; N, 4.63; Crystal data for 2 d at $25^{\circ} \mathrm{C}: \mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5}, M=578.70$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, \quad a=10.8763(20) \AA \AA_{z} \quad b=14.442(4) \AA, \quad c=$ $19.914(6) \AA, \quad V=3127.9(14) \AA^{3}, \quad Z=4, \quad D_{\mathrm{c}}=1.229 \mathrm{Mg} /$ $\mathrm{m}^{3}, \mu=0.08 \mathrm{~mm}^{-1}, 3085$ reflections, 389 parameters, $R=0.044, R w=0.064$.
4.3.5. 1-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-(3S)-iso-propyl-aziridine-($2 R$)-carboxylic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 2e. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.55(\mathrm{~m}, 8 \mathrm{H}), 7.26-7.07$ $(\mathrm{m}, 6 \mathrm{H}), 5.09(\mathrm{dd}, 1 \mathrm{H}, J=8.1,3.5 \mathrm{~Hz}), 3.77(\mathrm{~s}, 1 \mathrm{H}), 2.97$ (dd, $1 \mathrm{H}, J=7.8,5 \mathrm{~Hz}), 2.78(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}), 2.35-$ $2.21(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.50(\mathrm{~m}, 7 \mathrm{H}), 1.28-0.84(\mathrm{~m}, 9 \mathrm{H}), 0.66$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.8,164.4$, $149.2,143.2,133.9,130.2,128.5,128.1,126.9,126.4$, $126.3,125.8,122.8,83.1,81.3,59.0,54.0,51.5,47.7,43.4$, 37.2, 31.1, 30.0, 26.9, 24.5, 22.5, 19.6, 18.7; HRMS (EI): calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5}$, 578.2781; found, 578.2791. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 74.72; H, 6.62; N, 4.84. Found: $\mathrm{C}, 74.50 ; \mathrm{H}, 6.61 ; \mathrm{N}, 4.70$; Crystal data for 2 e at $25^{\circ} \mathrm{C}$: $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5}, \quad M=578.70$, orthorhombic, $P 2_{1} 2_{1} 2_{2}, \quad a=$ $8.745(4) \AA, \quad b=24.056(7) \AA, \quad c=14.938(4) \AA, \quad V=$ $3093.6(18) \AA^{3}, Z=4, D_{\mathrm{c}}=1.243 \mathrm{Mg} / \mathrm{m}^{3}, \mu=0.08 \mathrm{~mm}^{-1}$, 5802 reflections, 775 parameters, $R=0.044, R w=0.076$.
4.3.6. 1-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-(3S)-phenyl-aziridine-($2 R$)-carboxylic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 2f. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.59(\mathrm{~m}, 8 \mathrm{H}), 7.55-7.32(\mathrm{~m}$, $4 \mathrm{H}), 7.24-7.03(\mathrm{~m}, 7 \mathrm{H}), 5.15(\mathrm{dd}, 1 \mathrm{H}, J=8.2,3.4 \mathrm{~Hz})$, $3.91(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 3.61(\mathrm{~s}, 1 \mathrm{H}),(3.17,1 \mathrm{H}, \mathrm{d}$, $J=5.2 \mathrm{~Hz}), 2.32-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.55(\mathrm{~m}, 8 \mathrm{H}), 1.28-$ $0.87(\mathrm{~m}, 1 \mathrm{H}), 0.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $164.6,163.8,149.1,143.0,134.2,134.1,130.3,129.6$, $128.8,128.6,128.4,128.1,127.4,127.0,126.8,126.5$, $126.3,126.0,125.8,123.1,83.1,81.3,59.4,51.5,49.7$, $47.8,45.8,37.3,31.5,31.3,29.0,26.9,24.6,22.6,22.4$, 14.0, 11.3; HRMS (EI): calcd for $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5}, 612.2624$; found, 612.2622; Crystal data for $\mathbf{2 f}$ at $25^{\circ} \mathrm{C}$: $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5}, \quad M=612.72$, orthorhombic, $\quad P 2_{1} 2_{1} 2_{1}$, $a=13.206(3) \AA, \quad b=17.93(1) \AA, \quad c=30.597(7) \AA, \quad V=$ $7246(5) \AA^{3}, \quad Z=8, \quad D_{\mathrm{c}}=1.123 \mathrm{Mg} / \mathrm{m}^{3}, \quad \mu=0.07 \mathrm{~mm}^{-1}$, 6994 reflections, 830 parameters, $R=0.138, R w=0.194$.
4.3.7. 1-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-2-methyl-azi-ridine-($2 R$)-carboxylic acid 1 -(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 2g. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.60(\mathrm{~m}, 8 \mathrm{H}), 7.38-7.12(\mathrm{~m}$, $6 \mathrm{H}), 5.30-5.14(\mathrm{dd}, 1 \mathrm{H}, J=8.2,3.5 \mathrm{~Hz}), 4.23(\mathrm{~s}, 1 \mathrm{H})$, $3.66(\mathrm{~s}, 1 \mathrm{H}), 2.97(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 2.82(\mathrm{~s}, 1 \mathrm{H}), 2.47$ $(\mathrm{d}, 1 \mathrm{H}, ~ J=1.8 \mathrm{~Hz}), 2.39-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.53(\mathrm{~m}$, $10 \mathrm{H}), 1.34-0.62(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $167.8,165.7,165.4,164.7,149.1,148.6,143.8,143.2$,
$134.3,133.9,130.4,130.3,128.7,128.5,128.1,128.0,126.9$, $126.8,126.6,126.6,126.3,126.0,123.3,122.9,83.2,82.6$, $81.5,81.3,59.2,59.0,51.6,51.2,47.7,44.4,43.8,43.6$, $41.7,38.5,37.0,31.3,30.9,27.0,24.4,24.3,22.7,22.5$, 18.5, 13.4; HRMS (EI): calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}, 550.2468$; found, 550.2451; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 74.16; H, 6.22; N, 5.09. Found: C, 73.95; H, 6.08; N, 4.93.
4.3.8. 1-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-(2R,3S)-di-methyl-aziridine-2-carboxylic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 2h. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.58(\mathrm{~m}, 8 \mathrm{H}), 7.27-7.09$ (m, 6H), $5.17(\mathrm{dd}, 1 \mathrm{H}, J=8.1,3.5 \mathrm{~Hz}), 3.62(\mathrm{~s}, 1 \mathrm{H}), 3.04$ (qd, $1 \mathrm{H}, J=5.8,0.8 \mathrm{~Hz}), 2.32-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.84$ $(\mathrm{m}, \quad 4 \mathrm{H}), \quad 1.70-1.51(\mathrm{~m}, \quad 7 \mathrm{H}), \quad 1.37-1.29(\mathrm{~d}, \quad 3 \mathrm{H}$, $J=5.8 \mathrm{~Hz}), 1.16-0.85(\mathrm{~m}, 1 \mathrm{H}), 0.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.2,164.7,149.1,143.1,134.2$, $133.8,130.5,128.5,127.9,126.9,126.5,126.3,126.0$, $123.2,122.8,82.7,81.4,60.3,59.2,51.5,51.1,49.5,47.9$, 47.7, 37.0, 31.4, 27.0, 24.5, 22.4, 21.0, 14.0, 12.24; HRMS (EI): calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5}$, 564.2624; found, 564.2622. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 74.45; H, 6.43; N, 4.96 . Found: C, 74.18; H, 6.21; N, 4.84; Crystal data for 2h at $25^{\circ} \mathrm{C}: \mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5}, M=564.67$, orthorhombic, $P 2_{1} 2_{2} 2_{1}$, $a=6.842(6) \AA, \quad b=16.215(3) \AA, \quad c=25.986(5) \AA, \quad V=$ 2883(3) $\AA^{3}, \quad Z=4, \quad D_{\mathrm{c}}=1.301 \mathrm{Mg} / \mathrm{m}^{3}, \quad \mu=0.09 \mathrm{~mm}^{-1}$, 2897 reflections, 380 parameters, $R=0.055, R w=0.097$.
4.3.9. 1-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-(3S)-ethyl-(2R)-methyl-aziridine-2-carboxylic acid 1-(hydroxy-diphen-yl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 2i. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.58(\mathrm{~m}, 8 \mathrm{H}), 7.26-7.07$ $(\mathrm{m}, 6 \mathrm{H}), 5.16(\mathrm{dd}, 1 \mathrm{H}, J=8.1,3.5 \mathrm{~Hz}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 3.06$ (t, $1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.32-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.81(\mathrm{~m}, 2 \mathrm{H})$, $1.77-1.33(\mathrm{~m}, 12 \mathrm{H}), 1.08-1.01(\mathrm{~m}, 3 \mathrm{H}), 0.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.2,164.7,149.2,143.2$, $133.8,130.4,128.5,128.0,126.9,126.4,126.3,125.9$, $122.7,82.9,81.4,60.3,59.1,54.9,51.5,48.0,47.7,36.9$, 31.3, 27.0, 24.4, 22.5, 20.9, 14.1, 13.9, 10.9; HRMS (EI): calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5}, 578.2781$; found, 578.2764. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 74.72; H, 6.62; N, 4.84. Found: C, $74.66 ; \mathrm{H}, 6.62 ; \mathrm{N}, 4.65$.
4.3.10. 1-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-3,3-di-methyl-aziridine-2S-carboxylic acid 1-(hydroxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester $\mathbf{2 j}$. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.58(\mathrm{~m}, 8 \mathrm{H}), 7.30-7.08$ $(\mathrm{m}, 6 \mathrm{H}), 5.34-5.28(\mathrm{dd}, 1 \mathrm{H}, J=7.6,3.9 \mathrm{~Hz}), 3.98(\mathrm{~s}, 1 \mathrm{H})$, $3.17(\mathrm{~s}, 1 \mathrm{H}), 2.39-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.72-$ $1.40(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.26-0.88(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}$, $3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.64(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3,165.3,149.6,143.7,134.2,130.5,128.5,128.0$, $126.8,126.5,126.2,123.2,83.0,81.3,58.9,51.5,49.7$, 49.4, 47.7, 38.8, 31.1, 26.9, 24.6, 22.6, 19.8, 18.5; HRMS (EI): calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5}$, 564.2624; found, 564.2634 . Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 74.45; H, 6.43; N, 4.96. Found: C, 74.18; H, 6.29; N, 4.92.
4.3.11. 1-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-(3S)-methyl-aziridine-($2 R$)-carboxylic acid 1 -(methoxy-diphenyl-methyl)-7,7-dimethyl-bicyclo[2.2.1]hept-2-yl ester 2k. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-7.42(\mathrm{~m}, 8 \mathrm{H}), 7.38-7.14(\mathrm{~m}$,
$6 \mathrm{H}), 4.77(\mathrm{dd}, 1 \mathrm{H}, J=7.9,3.5 \mathrm{~Hz}), 3.21-2.61(\mathrm{~m}, 2 \mathrm{H})$, $2.82(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.22(\mathrm{~m}, 4 \mathrm{H})$, $1.49(\mathrm{~d}, 3 \mathrm{H}, J=5.4 \mathrm{~Hz}), 1.14-0.66(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H})$, $0.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.2,164.8$, $140.5,138.9,133.9,131.5,130.3,129.7,129.5,128.4$, $127.4,127.0,126.8,123.3,122.9,117.9,87.6,81.6,61.2$, $52.3,49.9,49.2,45.1,44.4,37.8,31.5,25.5,23.6,22.6$, 16.3, 14.0.
4.3.12. 2-\{2-[10,10-Dimethyl-2-oxo-3-(toluene-4-sulfonyl)-3, 4-diaza-tricyclo[5.2.1.0 ${ }^{1,5}$ |decane-4-carbonyl]-(2R)-aziridin-1-yl\}-isoindole-1,3-dione 2n. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.78(\mathrm{dd}, 2 \mathrm{H}, J=8.0,3.0 \mathrm{~Hz}), 7.70(\mathrm{dd}$, $2 \mathrm{H}, J=8.0,3.0 \mathrm{~Hz}$), $7.37(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}$), 3.71 (br s, $1 \mathrm{H}), 3.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.96(\mathrm{~d}, 2 \mathrm{H}, J=$ $6.6 \mathrm{~Hz}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, $1.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.4,166.7,164.3,146.9,134.2$, $130.3,130.1,129.1,123.2,71.0,60.2,53.0,47.5,40.3$, 38.5, 34.0, 29.2, 27.0, 21.8, 20.7, 20.4; HRMS (EI): calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}, 548.1724$; found, 548.1721. Crystal data for $2 n$ at $25{ }^{\circ} \mathrm{C}: \quad \mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}, \quad M=548.60$, orthorhombic, $P 2_{1} 2_{2} 2_{1}, a=6.7301(2) ~ \AA, ~ b=14.1264(4) \AA, c=$ $27.8317(9) \AA, \quad V=2640.02(14) \AA^{3}, \quad Z=4, \quad D_{\mathrm{c}}=1.377$ $\mathrm{Mg} / \mathrm{m}^{3}, \quad \mu=0.173 \mathrm{~mm}^{-1}, 10,184$ reflections, 353 parameters, $R=0.0934, R w=0.1526$.
4.3.13. 2-\{2-[10,10-Dimethyl-2-oxo-3-(toluene-4-sulfonyl)-3,4-diaza-tricyclo[5.2.1.0 ${ }^{1,5}$ |decane-4-carbonyl]-(3S)-methyl$2 R$-aziridin-1-yl\}-isoindole-1,3-dione 2o. Inseperable N invertomer mixture of diastereomers were obtained. Selected peaks were shown. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.66-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}$, $1 \mathrm{H}), 3.61(\mathrm{qd}, 1 \mathrm{H}, J=5.6,5.6 \mathrm{~Hz}), 3.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.29$ (br s, 1H), $3.06(\mathrm{qd}, 1 \mathrm{H}, J=5.65 .6 \mathrm{~Hz}), 2.98(\mathrm{~d}, 1 \mathrm{H}$, $J=13.5 \mathrm{~Hz}), 1.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $167.0,166.4,165.3,146.7,134.5,134.2,134.1,134.0$, $133.7,130.4,130.2,129.1,129.0,123.4,123.1,122.8,71.0$, $67.1,60.1,53.0,47.5,47.3,45.6,45.2,44.2,34.0,29.7$, 29.2, 28.8, 27.0; MS (EI) (\%): calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$, 562.1886; found, 562.4 (5), 406.9 (20), 379.0 (30), 260.2 (50), 247.0 (60), 229.0 (100), 201.2 (75), 155.1 (65).
4.3.14. 1-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-aziridine-(2R)-carboxylic acid methyl ester 4a. To a solution of $\mathbf{2 a}$ ($0.10 \mathrm{~g}, 0.19 \mathrm{mmol}$) in $\mathrm{MeOH}(2.0 \mathrm{~mL})$, was added sodium methoxide ($40 \mathrm{mg}, 0.74 \mathrm{mmol}$) in one portion at ambient temperature. The reaction was quenched with water $(25 \mathrm{~mL})$ after 3 h and extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated. The crude product was purified further by flash column chromatography using hexanes/ethyl acetate $=6: 1$ as a eluent to afford pure product $\mathbf{4 a}(30 \mathrm{mg}, 67 \%)$ and the auxiliary \mathbf{A} was recovered with 85% yield. Compound 4a: $[\alpha]_{\mathrm{D}}=+109.5\left(c \quad 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.66(\mathrm{~m}, 4 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.17$ (dd, $1 \mathrm{H}, J=7.6,5.8 \mathrm{~Hz}$), 2.82 (dd, $1 \mathrm{H}, J=7.6$, $1.6 \mathrm{~Hz}), \quad 2.84(\mathrm{dd}, \quad 1 \mathrm{H}, \quad J=5.8, \quad 1.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.5,164.5,134.3,129.9,123.3$, 52.7, 39.7, 36.4; HRMS (EI): calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$, 246.0624; found, 246.0641.

Acknowledgments

This work was supported by the National Science Council of the Republic of China (NSC 96-2113-M-003-005-MY3) and the National Taiwan Normal University (96TOP001).

References

1. (a) Pearson, W. H.; Lain, B. W.; Bergmeier, S. C. In Comprehensive Heterocyclic Chemistry II; Padwa, A., Ed.; Pergamon Press: New York, 1996; Vol. 1A, pp 1-60; (b) Rai, K. M. L.; Hassner, A. In Comprehensive Heterocyclic Chemistry II; Padwa, A., Ed.; Pergamon Press: New York, 1996; Vol. 1A, pp 61-96.
2. (a) Aggarwal, V. K.; Vasse, J.-L. Org. Lett. 2003, 5, 3987; (b) Xu, J. Tetrahedron: Asymmetry 2002, 13, 1129; (c) Loncaric, C.; Wulff, W. D. Org. Lett. 2001, 3, 3675; (d) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599.
3. (a) Padwa, A.; Murphree, S. S. In Progress in Heterocyclic Chemistry; Gribble, G. W., Gilchrist, T. L., Eds.; Elsevier Science: Oxford, 2000; Vol. 12, Chapter 4.1, p 57; (b) Padwa, A.; Pearson, W. H.; Lian, B. N.; Bergmeier, S. C. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Reese, C. W., Scriven, E. F., Eds.; Pergamon: Oxford, 1996; Vol. 1A, p 1; (c) Deyrup, J. A. In The Chemistry of Heterocyclic Compounds; Hassner, A., Ed.; Wiley: New York, 1983; Vol. 42, Part 1, pp 1-214.
4. For recent reviews for the preparation of aziridines and use of aziridines in asymmetric synthesis. see: (a) Ibuka, I. Chem. Soc. Rev. 1998, 27, 145; (b) Osborn, H. M. I.; Sweeney, J. Tetrahedron: Asymmetry 1997, 8, 1693; (c) Li, A.-H.; Dai, L.X.; Aggarwal, V. K. Chem. Rev. 1997, 97, 2341; (d) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599.
5. (a) Cardillo, G.; Gentilucci, L.; Tolomelli, A. Aldrichim. Acta 2003, 36, 39; (b) Mitchinson, A.; Nadin, A. J. Chem. Soc., Perkin Trans. 1 2000, 2862; (c) Atkinson, R. S. Tetrahedron 1999, 55, 1519; (d) Osborn, H. M. I.; Sweeney, J. Tetrahedron: Asymmetry 1997, 18, 1693; (e) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599; (f) Kasai, M.; Kono, M. Synlett 1992, 778; (g) Aube, J. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, UK, 1991; Vol. 1, p 835.
6. (a) Fernandez, I.; Valdivia, V.; Gori, B.; Alcudia, F.; Alvarez, E.; Khiar, N. Org. Lett. 2005, 7, 1307; (b) Ulukanli, S.; Karabuga, S.; Celik, A.; Kazaz, C. Tetrahedron Lett. 2005, 46, 197; (c) Chenna, P. H. D.; Peillard, F. R.; Dauban, P.; Dodd, R. H. Org. Lett. 2004, 6, 4503; (d) Fioravanti, S.; Mascia, M. G.; Pellacani, L.; Tardella, P. A. Tetrahedron 2004, 60, 8073; (e) Cavallo, A. S.; Roje, M.; Welter, R.; Sinjic, V. J. Org. Chem. 2004, 69, 1409; (f) Redlich, M.; Hossain, M.
M. Tetrahedron Lett. 2004, 45, 8987; (g) Calhorda, M. J.; Vaz, P. D. Chemtracts-Inorg. Chem. 2004, 17, 396; (h) Muller, P.; Fruit, C. Chem. Rev. 2003, 103, 2905; (i) Fioravanti, S.; Morreale, A.; Pellacani, L.; Tardella, P. A. J. Org. Chem. 2002, 67, 4972; (j) Gillespie, K. M.; Sanders, C. J.; Shaughnessy, P. O.; Westmoreland, I.; Thickitt, C. P.; Scott, P. J. Org. Chem. 2002, 67, 3450; (k) Nishimura, M.; Minakata, S.; Takahashi, T.; Oderaotoshi, Y.; Komatsu, M. J. Org. Chem. 2002, 67, 2101; (1) Aggarwal, V. K.; Alonso, E.; Ferrara, M.; Spey, S. E. J. Org. Chem. 2002, 67, 2335.
7. (a) Mish, M. R.; Guerra, F. M.; Carreira, E. M. J. Am. Chem. Soc. 1997, 119, 8379; (b) Liu, J.; Eddings, A.; Wallace, R. H. Tetrahedron Lett. 1997, 38, 6795; (c) Wallace, R. H.; Liu, J.; Zong, K. K.; Eddings, A. Tetrahedron Lett. 1997, 38, 6791; (d) Kim, B. H.; Curran, D. P. Tetrahedron 1993, 49, 293; (e) Kim, B. H.; Lee, J. Y.; Kim, Y.; Whang, D. Tetrahedron: Asymmetry 1991, 2, 27; (f) Kim, B. H.; Lee, J. Y. Tetrahedron: Asymmetry 1991, 2, 1359; (g) Oppolzer, W. Angew. Chem., Int. Ed. Engl. 1984, 23, 876.
8. (a) Chen, J.-H.; Venkatesham, U.; Lee, L.-C.; Chen, K. Tetrahedron 2006, 62, 887; (b) Yang, K.-S.; Chen, K. Org. Lett. 2000, 2, 729; (c) Chu, Y.-Y.; Yu, C.-S.; Chen, C.-J.; Yang, K.-S.; Lain, J.-C.; Lin, C.-H.; Chen, K. J. Org. Chem. 1999, 64, 6993.
9. Yang, K.-S.; Chen, K. J. Org. Chem. 2001, 66, 1676. For enantioselective azididination of N -enoyl oxazolidinones with camphor derived chiral ligands in the presence of N aminophthalimide and lead tetraacetate, see: Yang, K.-S.; Chen, K. Org. Lett. 2002, 4, 1107.
10. Kapron, J. T.; Santarsiero, B. D.; Vederas, J. C. J. Chem. Soc., Chem. Commun. 1993, 1074.
11. (a) Atkinson, R. S.; Ayscough, A. P.; Gattrell, W. T.; Raynham, T. M. J. Chem. Soc., Perkin Trans. 1 1998, 2783; (b) Atkinson, R. S.; Gattrell, W. T.; Ayscough, A. P.; Raynham, T. M. J. Chem. Soc., Perkin Trans. 1 1996, 1935.
12. (a) Oppolzer, W.; Poli, G.; Starkmann, C.; Bernardelli, G. Tetrahedron Lett. 1988, 29, 3559; (b) Bernardulli, G.; Oppolzer, W.; Schneider, P. Acta Crystallogr., Sect. C 1987, 43, 1000; (c) Oppolzer, W.; Chapuis, C.; Bernardulli, G. Helv. Chim. Acta 1984, 67, 1397.
13. Curran, D. P.; Heffner, T. A. J. Org. Chem. 1990, 55, 4585.
14. (a) Porter, N. A.; Rosenstein, I. J.; Breyer, R. A.; Bruhnke, J. D.; Wu, W.-X.; McPhail, A. T. J. Am. Chem. Soc. 1992, 114, 7664; (b) Kanemasa, S.; Onimura, K. Tetrahedron 1992, 48, 8631; (c) Curran, D. P.; Kim, B. H.; Daugherty, J.; Heffner, T. A. Tetrahedron Lett. 1988, 29, 3555.
15. Lee, W.-D.; Chiu, C.-C.; Hsu, H.-L.; Chen, K. Tetrahedron 2004, 60, 6657.
16. 1c (CCDC 655360), 1j (CCDC 655359), 1n (CCDC 655365), 2b (CCDC 655363), 2d (CCDC 655362), 2e (CCDC 655361), 2f (CCDC 655358), 2h (CCDC 655364), 2n (CCDC 655366).

[^0]: * Corresponding author. Tel.: +886 2 89315831; fax: +886 2 29324249; e-mail: kchen@ntnu.edu.tw

[^1]: ${ }^{\text {a }}$ All reactions were performed using chiral enone $\mathbf{1 a}(0.2 \mathrm{~g}, 0.53 \mathrm{mmol}), N$-aminophthalimide $(1.5$ equiv $), \mathrm{Pb}(\mathrm{OAc}){ }_{4}\left(1.6\right.$ equiv) in $\mathrm{THF}(5.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$.

