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The Michael reaction is generally regarded as one of the
most efficient, atom-economical and powerful carbon–
carbon bond-forming reactions in organic chemistry.[1] The
development of organocatalytic asymmetric Michael reac-
tions has been a significant research focus for several
years.[2] The direct asymmetric Michael addition of carbonyl
compounds with nitroalkenes to produce enantiomerically
enriched nitroalkanes has been described.[3,4] Among these
reactions, the Michael addition of unmodified aldehydes to
nitroalkenes is of particular interest because of the valuable
synthetic intermediates that are generated.[4] Betancort and
Barbas originally reported the organocatalytic asymmetric
Michael addition of unmodified aldehydes to nitroalkenes
with moderate to good enantioselectivities.[4a] Recently 3,3’-
bimorpholine derivatives,[4b] a chiral primary amine/thiourea
catalyst[4c] and l-prolinol[4d] organocatalysts have been devel-
oped for the Michael addition of aldehydes to nitroolefins.
Highly diastereo- and enantioselective conjugate additions
that involve aldehydes were independently reported by the
research groups of Wang,[4e] Hayashi,[4f] and Palomo[4g] using
pyrrolidine sulfonamide (1), diphenylprolinol silyl ether (2)
and trans-4-hydroxyprolylamide (3) respectively. However,
some of these reactions required a large excess of donor
source (up to 10 equiv of aldehyde) and high catalyst load-
ings (between 10 and 20 mol %). Despite the excellent re-
sults achieved from previous studies, the development of an
efficient organocatalyst for direct asymmetric Michael addi-
tion of aldehydes to various aryl- and alkylnitroalkenes with
low catalyst loading remains challenging in asymmetric syn-
thesis.

The metal-free, small, privileged organic molecules that
catalyze enantioselective reactions have attracted much at-

tention in recent years. Organocatalysts are usually highly
efficient and selective, stable under aerobic and aqueous re-
action conditions, nontoxic, environmentally friendly, and
thus highly desirable as catalysts/catalytic systems.[5,6] In
light of this, we have recently developed a series of cam-
phor-based pyrrolidinyl organocatalysts that have proven
their efficacy as catalysts in asymmetric synthesis.[7] In con-
tinuation of our research interest in organocatalysis, we de-
signed and synthesized a new prolinamide–camphor organo-
catalysts and have shown it to be efficient catalysts for
direct asymmetric Michael reaction. Herein, we wish to
report an excellent diastereo- and enantioselective direct
Michael addition of aldehydes with nitroalkenes catalyzed
by bifunctional organocatalysts 4 a–c. The desired Michael
products were obtained with high chemical yields (up to
94 %) and excellent stereoselectivities (up to 99:1 d.r. and
>99 % ee) with 5 mol % of organocatalyst 4 b.

In asymmetric organocatalysis there is a strong demand
for the design and synthesis of highly stereoselective, readily
accessible, and tunable catalysts. The synthesis of novel pro-
linamide–camphor organocatalysts 4 a–c begins with the
Boc-protected l-proline and trans-4-hydroxy l-proline.
Treatment of Boc l-proline and trans-4-hydroxy l-proline
with 1-amino-7,7-dimethylbicycloACHTUNGTRENNUNG[2.2.1]heptan-2-one (5)[8]

under standard coupling conditions (ethyl chloroformate
and Et3N in CHCl3) to give the corresponding amides (6 a
and 6 b) in 85 and 88 % isolated yields, respectively
(Scheme 1). Sodium borohydride reduction of 6 a and 6 b to
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provide the corresponding exo-alcohols 7 a and 7 b as a
single diastereomer, which was treated with trifluoroacetic
acid (TFA) in CH2Cl2 to generate the desired organocata-
lysts 4 a and 4 b without incident.

On the other hand, the trans-4-hydroxy group in 6 b (R=

OH) was protected as its TBDPS ether derivative, and sub-
sequent NaBH4 reduction to give the corresponding exo-al-
cohol 7 c. The exo-alcohol (7 c) was treated with TFA in
CH2Cl2 to yield organocatalyst 4 c. The synthetic route is
quite straightforward and can be easily scaled up to gram
quantities (2.0 g). The structures of organocatalysts 4 a–c
were fully characterized by IR, 1H, and 13C NMR spectros-
copy and HRMS, and the absolute stereochemistry of orga-
nocatalysts 4 a and 4 b were further confirmed by single-crys-
tal X-ray analyses (see the Supporting Information).[9]

The Michael reaction of propionaldehyde and trans-b-ni-
trostyrene was selected as model substrates in the presence
of catalytic quantities of organocatalysts 4 a–c. We initially
focused on solvent effects in the Michael reactions at ambi-
ent temperature. Organocatalyst 4 a was first examined and
led to high reactivities and good stereoselectivities in CHCl3

(Table 1, entry 1). High chemical yield (94 %) and diastereo-
selectivity (93:7), but poor enantioselectivity (36 % ee) was
observed in MeOH catalyzed by 4 a (Table 1, entry 2). A
modest result was achieved when the reaction was per-
formed in hexanes (Table 1, entry 3). Substantial improve-
ment in stereoselectivity (91% ee) was observed when the
reaction was carried out in CHCl3 and catalyzed by 4 b at
ambient temperature (Table 1, entry 4). Although the reac-
tivity was improved, unsatisfactory stereoselectivity was ob-
served when the reaction was carried out with very polar
protic solvents (Table 1, entry 5). The desired Michael prod-
uct 8 a was obtained with high chemical yields and moderate
enantioselectivties in hexanes and toluene (Table 1, entries 6
and 7). The progress of the reaction was fast under solvent-
free conditions and good diastereo- and enantioselectivities
were observed (Table 1, entry 8). When we performed the
reaction in brine using organocatalyst 4 b to generate 8 a,
high chemical yield (92 %) was achieved with high syn-dia-
stereoselectivity, but only 70 % ee (Table 1, entry 9). Reason-
ably, good results were achieved when H2O was used as the
reaction medium (Table 1, entry 10). Reactivity was dramat-
ically improved and high levels of stereoselectivity evolved

when 20 mol % of catalysts 4 b was used in solvent system
CHCl3/MeOH (9:1) (Table 1, entry 12). Lowering the con-
centration of 4 b to 10 mol% resulted in slightly improved
selectivity (Table 1, entry 13). To our surprise, the 5 mol %
catalyst loading also efficiently catalysed the Michael reac-
tion in a variety of solvent systems, such as CHCl3/MeOH,
CHCl3/IPA, CHCl3/EtOH, and CH2Cl2/MeOH.[10] However,
the best results were achieved in CHCl3/MeOH (9:1) to
afford the desired product with excellent stereoselectivity
(syn/anti ratio 94:6 and 92 % ee ; Table 1, entry 14). Al-
though the stereoselectivity retained, the reactivity dropped
significantly when 2 mol % catalyst was used (Table 1,
entry 15). Interestingly, the reactivity and stereoselectivity
significantly decreased when we performed the reaction
with 20 mol% of organocatalyst 4 c (Table 1, entry 16). The
diastereo- and enantioselectivities were improved when the
reaction was carried out at 0 8C with 10 mol % of organoca-
talyst 4 b (Table 1, entry 17). The rate of the reaction de-
creased in the presence of 5 mol % catalyst 4 b at 0 8C with
the same level of stereoselectivity (Table 1, entry 18). The
reactivity dropped significantly when the reaction was car-
ried out at �20 8C with retention of stereoselectivity
(Table 1, entry 19). As indicated from Table 1, both catalysts
4 a and 4 c performed poorly in the reaction between pro-ACHTUNGTRENNUNGpionaldehyde and trans-b-nitrostyrene (Table 1, entries 11
and 16 vs. entry 14), indicating that the hydroxyl group in
4 b must play some role in determining the stereochemical

Scheme 1. Synthesis of prolinamide–camphor organocatalysts 4 a–c.

Table 1. Optimization of enantioselective Michael addition of propion-ACHTUNGTRENNUNGaldehyde to trans-b-nitrostyrene catalyzed by 4a–c.[a]

4a–c solvent or T t Yield[b] d.r.[c] ee[d]ACHTUNGTRENNUNG(mol %) solvent system [oC] [h] [%] [%]

1 4a (20) CHCl3 RT 48 85 78:22 80
2 4a (20) MeOH RT 36 94 93:7 36
3 4a (20) hexanes RT 48 76 61:39 76
4 4b (20) CHCl3 RT 24 89 90:10 91
5 4b (20) MeOH RT 12 97 92:8 66
6 4b (20) hexanes RT 24 92 77:23 69
7 4b (20) toluene RT 24 94 87:13 89
8 4b (20) neat RT 12 94 88:12 71
9 4b (20) brine RT 12 92 92:8 70

10 4b (20) water RT 24 89 73:27 74
11 4a (20) CHCl3/MeOH (9:1) RT 36 87 76:24 76
12 4b (20) CHCl3/MeOH (9:1) RT 12 92 91:9 90
13 4b (10) CHCl3/MeOH (9:1) RT 15 92 93:7 92
14 4b (5) CHCl3/MeOH (9:1) RT 24 90 94:6 92
15 4b (2) CHCl3/MeOH (9:1) RT 48 78 95:5 90
16 4c (20) CHCl3/MeOH (9:1) RT 72 80 85:15 77
17 4b (10) CHCl3/MeOH (9:1) 0 48 92 95:5 94
18 4b (5) CHCl3/MeOH (9:1) 0 96 85 95:5 93
19 4b (10) CHCl3/MeOH (9:1) �20 72 30 96:4 90

[a] Unless otherwise specified, all reactions were carried out using pro-
pionaldehyde (0.6 mmol), trans-b-nitrostyrene (0.2 mmol) and 5-
20 mol % catalysts 4 a–c in the solvent (0.2 mL) indicated. [b] Isolated
yield. [c] Determined by 1H NMR and HPLC analysis. [d] ee of the syn
product was determined by chiral HPLC analysis (see Supporting Infor-
mation).
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outcomes of the reaction. Similar phenomena have been
previously observed.[4g]

Encouraged by these results, we further optimized cataly-
sis conditions in the presence of 5 mol % of various acid ad-
ditives. No significant improvement was achieved in either
reactivity or selectivity in the presence of various organic
acids (benzoic acid, acetic acid, 3,5-dinitrobenzoic acid, and
TFA). The protonation of the amine catalyst may subse-
quently hinder the enamine formation. To verify this, orga-
nocatalyst 4 b was treated with TFA in CHCl3. Upon slow
evaporation of CHCl3, it was clearly demonstrated that or-
ganocatalyst 4 b had crystallized as a TFA salt. The chemical
structure of this salt was established by single-crystal data
analysis (see Supporting Information).[9] The absolute con-
figuration of the resulted adduct was determined by compar-
ison of the value of the optical rotation with that of previ-
ously described[4a,e–g,m] and was found to be (R,S). It is worth
mentioning that three equivalents of propionaldehyde was
used as a donor for b-nitrostyrene in this catalytical process.

With the optimal reaction conditions realized, we further
proceeded to examine a variety of nitroalkenes reacting
with propionaldehyde to establish the general utility of this
asymmetric transformation (Table 2). All reactions were per-
formed in a CHCl3/MeOH (9:1) solvent system in the pres-
ence of 5 to 10 mol % of catalyst 4 b either at ambient tem-
perature or at 0 8C. Various aromatic substituted nitroal-
kenes reacted well with propionaldehyde donor to give the
desired Michael products (8 a–i) with 75–92 % yields and
high to excellent diastereo- and enantioselectivities (Table 2,
entries 1–9). In the case of heteroaromatic nitroalkenes, the
corresponding Michael adducts (8 j and 8 k) were obtained
with high to excellent diastereo- and enantioselectivities
(Table 2, entries 10 and 11). The aliphatic nitroalkene was
also an excellent Michael acceptor for this catalytic system.
Treatment of (4-nitro-but-3-enyl)benzene and 4-methyl-1-
nitro-pent-1-ene with propanal under the optimum reaction
conditions to give the desired products (8 l and 8 m) with ex-
cellent stereoselectivities (Table 2, entries 12 and 13). In ad-
dition to propionaldehyde, other linear aldehydes, such as
butyraldehyde and valeraldehyde, or branched aldehydes,
such as isovaleraldehyde, can be employed successfully as
the Michael donors with trans-b-nitrostyrene to give the Mi-
chael adducts (8 n–p ; Table 3, entries 1–3). These donors
were then used to react with both electron-rich and elec-
tron-deficient nitroalkenes. To our satisfaction, these reac-
tions proceeded smoothly and the desired Michael products
(8 q–v) were obtained with high levels of chemical yields
(80–90 %) and stereoselectivities (Table 3, entries 4–9). The
heteroaromatic Michael acceptor reacted smoothly with iso-
valeraldehyde to provide the 8 w with reasonable good
chemical yield and stereoselectivity (Table 3, entry 10). In-
terestingly, the alkyl-substituted nitroalkenes, such as, (4-
nitro-but-3-enyl)benzene and 4-methyl-1-nitro-pent-1-ene,
are also excellent Michael acceptors to give the desired Mi-
chael products (8 x and 8 y) in moderate yields with high ste-
reoselectivities (Table 3, entries 11 and 12). Unfortunately,
the acetaldehyde reacts sluggishly with trans-b-nitrostyrene

in the presence of organocatalyst 4 b under the optimum re-
action condition. Only trace amount of desired Michael
product formation was observed by the crude 1H NMR anal-
ysis.

The utility of this approach is illustrated in the reaction of
propionaldehyde with b-nitrostyrene on a 10 mmol scale,
which produced 8 a with an 85 % isolated yield and high
level of diastereo- and enantioselectivity (syn/anti 88:12;

Table 2. Enantioselective Michael addition of propionaldehyde to trans-
b-nitroalkene catalyzed by 4 b.[a]

Product Cat. 4 bACHTUNGTRENNUNG[mol %]
T
[8C]

t
[d]

Yield[b]

[%]
d.r.[c] ee[d]

[%]

1 5 RT 1.0 90 94:6 92
10 0 2.0 92 95:5 94

2 5 RT 2.0 84 96:4 94
10 0 3.0 88 98:2 96

3 5 RT 1.0 92 93:7 90
10 0 1.5 89 95:5 89

4 5 RT 2.0 89 95:5 94
10 0 2.5 88 95:5 96

5 5 RT 1.5 83 83:17 90
10 0 2.5 88 91:9 97

6 5 RT 2.5 89 93:7 90
10 0 5.0 83 95:5 96

7 5 RT 1.5 80 93:7 91
10 0 2.5 75 97:3 94

8 5 RT 2.0 89 92:8 94
10 0 4.0 84 98:2 96

9 5 RT 2.0 82 93:7 94
10 0 3.0 76 97:3 96

10 5 RT 2.0 80 97:3 98
10 0 4.0 74 98:2 >99

11 5 RT 2.0 89 90:10 94
10 0 3.0 94 91:9 97

12 10 0 4.0 64 99:1 95

13 10 0 4.0 46 89:11 99

[a] Unless otherwise specified, all reactions were carried out using pro-
pionaldehyde (0.6 mmol), nitroalkenes (0.2 mmol) and 5 or 10 mol % cat-
alyst 4b in CHCl3/MeOH. [b] Isolated yield. [c] syn/anti ratio was deter-
mined by 1H NMR and HPLC analysis. [d] ee of the syn product was de-
termined by chiral HPLC analysis (see: Supporting Information).
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91 % ee ; Scheme 2). As shown in Scheme 2, the Michael
product 8 a was converted into corresponding d-nitro alcohol
followed by tosylation with TsCl in the presence of pyridine.
The tosylated product 9 was treated with sodium azide and
subsequent “click” chemistry[11] in the presence copper-cata-
lyzed cycloaddition to afford enantiomerically enriched tria-
zole derivative (10). The stereochemistry of the 1,4-triazole
derivative was retained during the reaction process. The tri-ACHTUNGTRENNUNGazole derivatives are important building blocks in medicinal

chemistry and find various applications in both material sci-
ence and pharmaceutical research.[12]

Though further studies are needed to elucidate the mech-
anism of the Michael addition, the reaction is believed to
proceed through an enamine process and the stereochemical
induction can be explained as follows. The bifunctional or-
ganocatalyst (4 b) pyrrolidine moiety reacts with the un-
modified aldehyde to form nucleophilic enamine and the 4-
hydroxy functionality activated
the nitro group through hydro-
gen bonding to organize a fa-
vourable transition model (Fig-
ure 1).[4f,g] The neighboring rigid
bicyclic camphor structural
scaffold can serve as an effi-
cient stereocontrolling element.
Approach of the nitro olefin
from the less-hindered si face
of the enamine would produce
the observed stereochemistry.

In summary, new prolinamide-derived organocatalysts
4 a–c that contain a structural rigid bicyclic camphor scaffold
were used for the first time in organocatalysis. We have
demonstrated a practical application of organocatalysts 4 a–c
in the Michael addition of aldehydes with nitroalkenes to
generate corresponding products with high chemical yields
and high to excellent levels of diastereo- and enantioselec-
tivities. This represents an attractive alternative method of
organocatalytic asymmetric Michael addition. Further stud-
ies of the catalysts used in organocatalysis are currently un-
derway.

Experimental Section

General procedure for the asymmetric Michael reaction : The aldehyde
(0.6 mmol) was added to a mixture of catalyst 4 b (2.7 mg, 0.01 mmol)
and the corresponding nitroalkene (0.2 mmol) in CHCl3/MeOH (9:1,
0.2 mL). The reaction mixture was stirred at either ambient temperature
or 0 8C for the requisite times as indicated in Tables 1–3. After the nitro-
alkene was consumed, as seen by TLC analysis, the reaction mixture was
subject to flash column chromatography on silica gel (ethyl acetate/hex-

Table 3. Enantioselective Michael addition of unmodified aldehydes to
nitroalkenes catalyzed by 4 b.[a]

Product Cat. 4 bACHTUNGTRENNUNG[mol %]
T
[8C]

t
[d]

Yield[b]

[%]
d.r.[c] ee[d]

[%]

1 10 0 4.0 86 98:2 96

2 10 0 5.0 78 99:1 91

3 10 RT 3.5 85 91:9 84

4 10 0 4.0 84 97:3 93

5 10 0 3.5 82 93:7 93

6 10 0 5.0 88 98:2 92

7 10 RT 3.0 90 95:5 90

8 10 0 5.0 80 99:1 89

9 10 0 5.0 84 95:5 87

10 10 RT 5.0 76 93:7 79

11 10 0 5.0 60 95:5 96

12 10 0 5.0 42 99:1 89

[a] Unless otherwise specified, all reactions were carried out using vari-
ous aldehydes (0.6 mmol), nitroalkenes (0.2 mmol) and 10 mol % catalyst
4b in CHCl3/MeOH. [b] Isolated yield. [c] syn/anti ratio was determined
by 1H NMR and HPLC analysis. [d] ee of the syn product was determined
by chiral HPLC analysis (see: Supporting Information).

Figure 1. Proposed transition-
state model for the Michael re-
action catalyzed by 4b.

Scheme 2. Synthesis of triazole derivative (10) from Michael adduct 8 a.
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anes=1:5) to give a pure Michael product. The enantiomeric excess of
Michael products was determined by chiral HPLC analysis. (2R, 3S)-2-
Methyl-4-nitro-3-phenyl-butanal (8a): The enantiomeric purity was deter-
mined by using Chiralcel OD-H (iPrOH/hexanes, 10:90, flow rate
1.0 mL min�1, l =254 nm); tR =31.7 min (minor); tR =46.7 min (major).
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