Samarium Diiodide-Promoted Intramolecular Radical Cyclization of (η^{4}-Diene)Fe(CO) 3 Complexes Bearing Keto Side Chains

Ming-Chang P. Yeh,* Fu-Chun Wang, Jin-J uean Tu, Sun-Chi Chang, Cheng-Chiang Chou, and Jin-Wei Liao
Department of Chemistry, National Taiwan Normal University, 88 Sec 4, Ding-J ou Road, Taipe, Taiwan, 117 ROC

Received August 3, 1998

Abstract

Reaction of samarium diiodide with (η^{4}-cyclohexadiene) $\mathrm{Fe}(\mathrm{CO})_{3}$ complexes bearing keto side chains in THF/HMPA/t-BuOH gives fused bicyclo[4.3.0]nonenol derivatives, whereas (η^{4}-cycloheptadiene) $\mathrm{Fe}(\mathrm{CO})_{3}$ analogues produce a bicyclo[5.3.0]decenol ring skeleton. The iron-mediated intramolecular radical addition allows for the direct stereocontrol of three contiguous stereogenic centers of these fused bicyclic skeletons. Under the same reaction conditions, intramolecular ketyl radical cyclization of acyclic (η^{4}-1,3-butadiene) $\mathrm{Fe}(\mathrm{CO})_{3}$ complexes with keto side chains at the terminal position of the diene ligands furnishes disubstituted cyclopentanol and cyclohexanol derivatives with excellent diastereosel ectivity.

The chemistry of diene-iron complexes is a subject of continuing interest. The general applications of the complexes are (i) electrophilic reactions with reactive carbon nucleophiles; ${ }^{1}$ (ii) nucleophilic reactions with electrophiles; ${ }^{2}$ and (iii) additions of nucleophiles to (η^{5} pentadienyl)tricarbonyliron(0) and (η^{5}-cyclohexadienyl)tricarbonyliron(0) cations. ${ }^{3,4}$ Surprisingly, reports on the addition of free radical species to the diene ligand of ($\eta^{4}-1,3$-diene)tricarbonyliron(0) complexes are not found. Recently, our attention turned to the intramolecular radical cydization of diene-iron complexes containing a primary iodide, for example $\mathbf{1}$, using 1.1 equiv of tributyltin hydride and AIBN (cat.). However, only the reduced product 2 was isolated. Moreover, treatment of complex $\mathbf{1}$ with 1.2 molar equiv of Sml_{2} and a catalytic amount of FeCl_{3} using Molander's protocols also produced $\mathbf{2}$ in quantitative yield. ${ }^{5}$ The primary radical might be formed under these two

[^0]reaction conditions, however, the low nucleophilicity of the radical prevented its addition to the diene ligand. Inspired by recent successful examples of intramolecular addition of the relative nucleophilic ketyl radical ${ }^{5 c, d}$ to the dihydronaphthalenetricarbonylchromium (0) and tetralintricarbonylchromium(0) complexes developed by Schmalz, ${ }^{6,7}$ we turned our efforts on radical cyclizations of this type to (η^{4}-1,3-diene)tricarbonyliron(0) complexes bearing keto groups. We here report on the first example of intramolecular cydization of the ketyl radical to ($\eta^{4}-1,3$-diene)tricarbonyliron(0) complexes mediated by samarium(II) iodide.

Results and Discussion

The racemic starting complexes 3-9 required to test the intramolecular radical cyclization were prepared by addition of 2.5 molar equiv of methyllithium to the corresponding acid complexes following the literature procedure. ${ }^{2 c, 8}$ Our first experiment began with 3. Treatment of the keto complex $\mathbf{3}$ with 4.5 molar equiv of samarium(II) di iodide in THF with hexamethylphosphoric acid triamide (HMPA) as a cosolvent and tertbutyl alcohol as a proton source at $-78{ }^{\circ} \mathrm{C}$ under nitrogen for 2 h provided a major product in 54% yield, identified as bicyclo[4.3.0]nonenol derivative $\mathbf{1 1}$ (entry 1, Table 1). It is important to note that three contiguous stereogenic centers of the racemic bicyclic compound $\mathbf{1 1}$ are created with high diastereoselectivity. The product of the relative stereochemistry as shown was isolated

[^1](8) Pearson, A. J. J. Chem. Soc., Perkin Trans. 1 1980, 400.

$1: R=I$
$2: R=H$

3

4

5

6a: $n=2$
6b: $\mathrm{n}=3$

$7 \mathrm{a}: \mathrm{n}=2$
$7 b: n=3$

8a: $\mathrm{n}=2$
8b : $n=3$

9
as a single diastereomer. Under the same reaction conditions, intramolecular radical cyclization of complex 4 afforded bicyclo[4.3.0]nonenol derivative 12 (39\%) as the sole cyclized product (entry 2, Table 1). The relative stereochemistry of $\mathbf{1 1}$ and $\mathbf{1 2}$ was assigned on the basis of their close chemical shift values (81.8 and 79.5 ppm , respectively) of the tertiary al cohol carbon in their ${ }^{13} \mathrm{C}$ NMR spectra. The chemical shift values are consistent with thedata of 1,2-cis-dialkyl-substituted cyclopentanol found in the literature. ${ }^{5 c, 9}$ Interestingly, the complex with an electron-donating methoxy group, 5 (entry 3, Table 1), also underwent intramolecular radical cyclization to produce the bicyclo[4.3.0]nonanone derivative 13 in 89% yield as the only diastereomer isolated. Since a simple arene-chromium complex such as ($\eta^{6}-4$-phe-nylbutan-2-one)tricarbonylchromium does not underego intramolecular radical cyclization, ${ }^{7}$ the result may indicate that iron-diene complexes undergo intramolecular ketyl radical addition easier than do arenechromium complexes. H owever, the stereochemistry of the hydroxy group of $\mathbf{1 3}$ was assigned at the endo face on the basis of its ${ }^{13} \mathrm{C}$ NMR spectrum. The chemical shift of 69.6 ppm in 13 was assigned to the tertiary al cohol carbon. The observed upfield chemical shift of 69.6 ppm demands the cis relationship of the hydroxyl group and the adjacent alkyl substituents in the fivemembered ring, and the assignment is consistent with the report found in the literature. ${ }^{10}$ The origin of different stereochemical preferences observed for the formation of bicyclic compounds 11 and 12 and the bicyclo[4.3.0]nonanone derivative $\mathbf{1 3}$ was suggested as follows. Reaction of complex $\mathbf{3}$ with samarium(II) iodide in THF/HMPA/t-BuOH generated ketyl radical anion

Table 1. Racemic Cyclic Tertiary Alcohols Obtained by Intramolecular Addition of Ketyl Radicals to ($\boldsymbol{\eta}^{4}$-diene)Fe(CO) ${ }_{3}$ Complexes in THF/HMPA/t-BuOH

No. | keto |
| :---: |
| complex |

addition of the ketyl radical $\mathbf{1 4}$ at the terminal position (C-4) of the diene ligand gave the putative allyl radical intermediate 15. Addition at the internal position (C3) was not found. In constrast to the intramolecular carbanion additions, which occur exclusively at the internal position of the diene ligand, the ketyl radical species only attack at theterminal position of the diene ligand at $-78{ }^{\circ} \mathrm{C} .{ }^{4}$ The allyl radical species $\mathbf{1 5}$ could further be reduced by samarium(II) iodide to provide 14. Due to the steric bulk of the ketyl radical bearing a samarium atom, the ketyl radical points away from the diene moiety in the transition state. Moreover, the anti relationship of the diene ligand and the ketyl oxygen is likely to be favorable in the transition state as noted previously (Scheme 1). $5 \mathrm{~b}, 11$ Thus anti, si-face

[^2]
Scheme 1

16
17

11
the allyl anionic complex 16. Protonation of $\mathbf{1 6}$ with t-BuOH produced iron-hydride species 17. Addition of the hydride at the less hindered site of the allyl ligand furnished 2-methylbicyclo[4.3.0]non-8-en-2-ol (11). The above reaction pathway involving single electron transfer of Sm(II) species and intramolecular ketyl radical cyclization was first proposed by Schmalz in the case of (η^{6}-arene) $\mathrm{Cr}(\mathrm{CO})_{3}$ derivatives. ${ }^{6}$ However, chelation control can be employed to alter the diastereosel ectivity for complex 5. As shown in Scheme 2, the methoxy group may provide a chelating center for the samarium species in 18. Anti addition of the ketyl radical at theterminal C-4 position of the diene ligand gave allyl radical intermediate 19, which led to the formation of $\mathbf{1 3}$ as the major product in 89% yield.

Under the same reaction conditions, intramolecular radical cyclizations of seven-membered ring substrates 6a afforded bicyclo[5.3.0]decenol 20 (49\%) as the only diastereomeric product (entry 4, Table 1). The observed chemical shift of 82.7 ppm for the tertiary al cohol carbon in $\mathbf{2 0}$ demands the cis-dialkyl relationship in a fivemembered ring as stated previously. Increasing the tether length by 1 with complex 6b (entry 5, Table 1) led to the bicydl o[5.4.0]decenol derivative $\mathbf{2 1}$ as the only diastereomer in 21% yield. The relative stereochemistry of $\mathbf{2 1}$ was determined by ${ }^{13} \mathrm{C}$ NMR spectroscopy. The chemical shift of 72.7 ppm assigned to the carbinol carbon is consistent with those of cis-1,2-disubstituted cyclohexanol found in the literature. ${ }^{9}$

Using the same approach, we are able to obtain 1,2disubstituted cyclopentanol and cyclohexanol derivatives via intramolecular radical cyclization of acyclic (η^{4} diene) $\mathrm{Fe}(\mathrm{CO})_{3}$ complexes bearing a methyl ketone side chain at the terminal position of the diene ligand. Intramolecular cyclization of the ketyl radical anion generated by treating complex 7a with 4.5 molar equiv of samarium(II) diiodide in THF/HMPA/t-BuOH afforded cyclopentanol derivative 22 as the only diastereomeric product in 36% yield after purification via flash
column chromatography and short-path distillation of the residue. Several examples of radical cyclization of acyclic diene-iron complexes are summarized in Table 1 (entries 6-10). The stereochemical assignments of 22-26 were provided by comparison of their ${ }^{13} \mathrm{C}$ NMR chemical shifts of the tertiary alcohol carbon with the data of cis-1,2-dialkylcyclopentanol and -cyclohexanol derivatives formed in the literature. ${ }^{9,10}$ The assignment of the stereochemistry of $\mathbf{2 2 - 2 6}$ is consistent with the reaction pathway proposed for the cyclic precursors (entries 1 and 2, Table 1). It is important to mention that the isolation of cyclohexanol derivative 26 (73.3 ppm for the tertiary carbinol center) ${ }^{9}$ with the cis-1,2dialkyl substituent is consistentent with the proposed reaction pathway stated in Scheme 1. Therefore, a methyl group presented at the C-2 position of the diene ligand, for example 9, does not affect the relative stereochemistry of the cyclized product (entry 9, Table 1). The result may further explain the chelation effect (Scheme 2) caused by the methoxy group at the C-2 position of the diene ligand, which leads to the generation of 13 with an endo hydroxy group (entry 3, Table 1). Moreover, the stereochemistry of the double bonds in 22-25 (entries 6-9, Table 1) was assigned as trans on the basis of their ${ }^{1} \mathrm{H}$ NMR decoupling experiments. For example, the coupling constant of 15.2 Hz for the two vicinal vinyl protons of 22 suggested a trans orientation of the double bond. The allyl anion species 27 (Scheme 3) derived from the ketyl radical addition of 7a followed by samarium diiodide reduction may undergo allyl syn-anti isomerization to give 28. ${ }^{12}$ Protonation of $\mathbf{2 8}$ with t-BuOH afforded 22. Attempted intramolecular radical cyclization of complexes 29 and 30, however, failed to produce cyclobutanol and cycloheptanol derivatives. The reduced secondary alcohols were isolated after allowing the reaction mixture to proceed for a longer period of time (14 h) at $-78{ }^{\circ} \mathrm{C}$. The difficulty in forming cyclobutanol and cycloheptanol

systems might be attributed to unfavorable formation of four- and seven-membered rings.

The reactions described herein demonstrate for the first time that intramolecular iron-mediated radical cyclization promoted by Sml_{2} can be a convenient method for the formation of fused bicylic alcohols with excellent regio- and stereochemical control. The ability to achieve stereocontrol of three stereogenic centers in fused bicyclic compounds in a simple reaction may have further applications. This convenient synthetic strategy can also be applied for the diastereoselective synthesis of cis-1,2-diakylcyclopentanol and -cyclohexanol derivatives under very mild reaction conditions.

Experimental Section

All reactions were run under a nitrogen atmosphere in ovendried glassware unless otherwise indicated. Anhydrous solvents or reaction mixtures were transferred via oven-dried syringe or cannula. Diethyl ether (ether) and tetrahydrofuran (THF) were distilled under nitrogen from a deep blue sodium benzophenone ketyl solution. Hexamethyl phosphoric acid triamide was distilled from calcium chloride. Flash column chromatography, following the method of Still, ${ }^{13}$ employed E. Merck silica gel (Kieselgel 60, 230-400 mesh) using the indicated solvents. Analytical thin-layer chromatography was performed with silica gel $60 \mathrm{~F}_{254}$ plastic plates of 0.2 mm thickness from E. Merck. The term "concentration" refers to the removal of solvent with an aspirator pump (Yamato Instrument Company model WP-15) with a Buchi RotovaporR. The term "under nitrogen" implies that the apparatus was evacuated (oil pump) and then filled with nitrogen three times. Theterm "short-path distillation" refers to the process in which the entire distillation apparatus (a tube closed at one end, held horizontally), with the exception of the collection bulb, was slowly heated in an air bath from 25 to $150^{\circ} \mathrm{C}$ under vacuum;

[^3]the distillate was collected at $-78{ }^{\circ} \mathrm{C}$; and boiling points for fractions refers to the bath temperature range. Melting points were determined in open capillaries with a Thomas-Hoover apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ nuclear magnetic resonance (NMR) spectra were obtained with J EOL-EX 400 (400 MHz) and Bruker AC-200 (200 MHz) spectrometers. The chemical shifts are reported in ppm with either tetramethylsilane (0.00 ppm) or $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ as internal standards. ${ }^{13} \mathrm{C}$ NMR spectra were recorded with J EOL-EX 400 (100.4 MHz) and Bruker AC $200(50.2 \mathrm{MHz})$ spectrometers with $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ as the internal standard. Infrared (IR) spectra were recorded with a J ASCO IR-700 spectrometer. Mass spectra were acquired on a J EOL J MS-D 100 spectrometer at an ionization potential of 70 eV and are reported as mass/charge (m / e) with percent relative abundance. Highresolution mass spectra were obtained with an AEI MS-9 double-focusing mass spectrometer and a J EOL J MS-HX 110 spectrometer in the Department of Chemistry, Central Instrument Center, Taichung.

General Procedure for Addition of Methyllithium to Acid Complexes. Synthesis of Iron Complexes Bearing a Methyl Ketone Side Chain. ${ }^{8}$ Methyllithium (2.5 molor equiv) in hexane was added to a stirred solution of an acid complex in 10 mL of THF at $0^{\circ} \mathrm{C}$ under nitrogen. Thereaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and then quenched with saturated aqueous ammonium chloride sol ution. The reaction mixture was diluted with 100 mL of 50% ethyl acetate/hexane. The resultant solution was washed with water ($100 \mathrm{~mL} \times 3$) and brine ($100 \mathrm{~mL} \times 3$), dried over anhydrous magnesium sulfate (10 g), and concentrated to give the crude mixtutre.

General Procedure for Intramolecular Radical Cyclization of (η^{4}-Diene) $\mathrm{Fe}(\mathrm{CO})_{3}$ Complexes Bearing Keto Side Chains. In a typical procedure, to a solution of freshly prepared $\mathrm{Sml}_{2}{ }^{14}(4.5 \mathrm{mmol})$ and HMPA (20.0 mmol) in 20 mL of THF was added slowly a solution of a diene-iron complex $(1.0 \mathrm{mmol})$ in 4.0 mL of THF followed by addition of 0.22 mL of $\mathrm{t}-\mathrm{BuOH}$ under nitrogen at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was quenched with saturated aqueous ammonium chloride. The reaction mixture was diluted with ether (100 mL). The resultant solution was washed with water ($100 \mathrm{~mL} \times 3$) and brine ($100 \mathrm{~mL} \times 3$), dried over anhydrous magnesium sulfate (10 g), and concentrated to give the crude mixture.
[exo-4-[(1-4- $\boldsymbol{)}$-1,3-Cyclohexadien-5-yl]butan-2-one]tricarbonyliron Complex (3). The crude mixture obtained from the addition of methyllithium (23.45 mmol) to the corresponding acid complex ${ }^{2 c}(2.74 \mathrm{~g}, 9.38 \mathrm{mmol})$ was purified via flash column chromatography (silica gel 1:5 ethyl acetate/ hexanes) to give $\mathbf{3}$ ($0.9 \mathrm{~g}, 3.1 \mathrm{mmol}, 33 \%$) as a yellow oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3057, 3009, 2988, 2936, 2849, 2042, 1968, 1712, 1614, $1422,1366,1268,1159,951,879,820 \mathrm{~cm}^{-1}$; 1 H NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.36(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~m}, 1 \mathrm{H}),, 3.06(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~m}$, $1 \mathrm{H}), 2.36(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.09-1.96(\mathrm{~m}, 2$ H,), 1.61-1.41 (m, 2 H), $1.20(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.4 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 212.0,208.4,85.7,84.5,65.9,59.5,42.2,37.5,33.4$, 30.6, 29.9; MS (70 eV) m/e (rel intensity) 290 (M+, 20), 262 (60), 234 (58), 206 (48), 204 (100), 148(36), 134(94); HRMS (EI) m / e calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{FeO}_{4}$ 290.0241, found 290.0239.
[exo-4-[(1-4- $\boldsymbol{\eta}$)-1,3-C yclohexadien-2-yl]butan-2-one]tricarbonyliron Complex (4). The crude mixture obtained from the addition of methyllithium (7.57 mmol) to the corresponding acid complex ${ }^{2 \mathrm{c}}(0.88 \mathrm{~g}, 3.03 \mathrm{mmol})$ was purified via flash column chromatography (silica gel, 1:5 ethyl acetate/ hexanes) to give 4 ($0.42 \mathrm{~g}, 1.45 \mathrm{mmol}, 47 \%$) as a yellow oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3067, 3047, 2990, 2938, 2855, 2043, 1968, 1715, 1667, $1366,1088,797,735 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.16$ $(\mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H})$, $2.74(\mathrm{~m}, 2 \mathrm{H}) 2.47$ (m, 1 H), 2.43 (m, 1 H), $2.20(\mathrm{~s}, 3 \mathrm{H}), 1.68$ $(\mathrm{m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.9$, 207.1, 105.5, 84.8, 64.5, 59.2, 44.0, 30.0, 24.6, 23.7; MS (70 eV) m/e (rel intensity) 262 (8), 234 (33), 206 (20), 204 (100), 148 (46), 91 (38); HRMS (EI) m/e cal cd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{FeO}_{3}$ (M+ ${ }^{+}$ CO) 262.0292, found 262.0290 .
[exo-4-[(1-4- $)$-2-Methoxy-1,3-cyclohexadien-5-yl]butan-2-one]tricarbonyliron Complex (5). The crude mixture obtained from the addition of methyllithium (8.85 mmol) to the corresponding acid complex ${ }^{2 c}$ ($1.14 \mathrm{~g}, 3.54 \mathrm{mmol}$) was purified via flash column chromatography (silica gel, $1: 5$ ethyl acetate/hexanes) to give 5 ($0.46 \mathrm{~g}, 1.44 \mathrm{mmol}, 41 \%$) as a yellow oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3684,3402,3063,2991,2984,2937,2042$, 1963, 1712, 1608, 1485, 1452, 1429, 1413, 1363, 1255, 1228, $1172,1155,1093,1020,896,879,804,754 \mathrm{~cm}^{-1}$; 1 H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.07(\mathrm{dd}, \mathrm{J}=3.1 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3$ H), 3.27 (dd, J $=3.1 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.65(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1$ H), $2.36(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 2.01$ (m, 1 H$), 1.58(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.4 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 210.8,208.5,139.7,66.3,54.6,54.3,52.5,42.5,37.2$, 33.5, 31.7, 29.9; MS (70 eV) m/e (rel intensity) 320 (18), 292 (30), 264 (48), 234 (100), 204 (17), 178 (19), 163 (97), 121 (28); HRMS (EI) m/e calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{FeO}_{5} 320.1040$, found 320.1042.
[exo-4-[(1-4- $\boldsymbol{\eta})$-1,3-Cycloheptadien-5-yl]butan-2-one]tricarbonyliron Complex (6a). The crude mixture obtained from the addition of methyllithium (14.0 mmol) to the corresponding acid complex ${ }^{15}$ ($1.14 \mathrm{~g}, 5.6 \mathrm{mmol}$) was purified via flash column chromatography (silica gel, 1:5 ethyl acetate/ hexanes) to give $\mathbf{6 a}(0.62 \mathrm{~g}, 2.05 \mathrm{mmol}, 37 \%)$ as a yellow oil: IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 3071, 3061, 3057, 3055, 3042, 3020, 2996, 2976, 2961, 2930, 2873, 2670, 2440, 2306, 2038, 1948, 1715, 1607, $1559 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.26(\mathrm{~m}, 2 \mathrm{H}), 3.04$ (m, 1 H), 2.77 (d, J $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, 2.14 (s, 3 H), 2.07 (m, 1 H), 1.90 (m, 2 H), 1.59 (m, 1 H), 1.47 (m, 1 H$), 1.33(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100.4 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 211,208,88,87,63,59,40,38,34,30,29.5,28$; MS (30 eV) m/e(rel intensity) 248 ($\mathrm{M}^{+}-2$ CO, 27), 220 (100), 218 (36), 174 (4), 162 (73), 148 (85), 134 (45), 91 (96), 56 (37); HRMS (EI) m/e calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{FeO}_{2}\left(\mathrm{M}^{+}-2 \mathrm{CO}\right) 248.0500$, found 248.0503.
[exo-5-[(1-4- $)$)-1,3-Cycloheptadien-5-yl]pentan-2-one]tricarbonyliron Complex (6b). The crude mixture obtained from the addition of methyllithium (10.5 mmol) to the corresponding acid complex ${ }^{15}(1.4 \mathrm{~g}, 4.2 \mathrm{mmol})$ was purified via flash column chromatography (silica gel, 1:5 ethyl acetate/hexanes) to give $\mathbf{6 b}(0.37 \mathrm{~g}, 1.20 \mathrm{mmol}, 28 \%)$ as a yellow oil: IR ($\mathrm{CH}_{2}{ }^{-}$ Cl_{2}) 3070, 3022, 2999, 2928, 2849, 2669, 2438, 2042, 1954, 1712, 1608, 1446, 1406, 1359, 1300, 1217, 1161, 1089, 951, 925, 910, $875,846,788,754,744,736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.25(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1$ H), 2.39 (t, J $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.89$ (m, 2 H), $1.54(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~m}, 1 \mathrm{H}),, 1.25(\mathrm{~m}, 1 \mathrm{H}), 1.17$ (m, $1 \mathrm{H}), 0.87(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.7$, 208.8, 88.3, 87.1, 63.9, 59.4, 43.7, 40.6, 38.4, 29.8, 28.3, 20.6; MS (30 eV) m/e (rel intensity) 262 ($\mathrm{M}^{+}-2 \mathrm{CO}, 22$), 234 (M^{+} - 3 CO, 100), 232 (28), 176 (7), 162 (30), 148 (24), 105 (11), 91

[^4](21), 56 (9); HRMS (EI) m/e calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{FeO}_{2}$ ($\mathrm{M}^{+}-2 \mathrm{CO}$) 262.0656, found 262.0658 .
[(6-9-ף)-cis-6,8-Nonadien-2-one]tricarbonyliron Complex (7a). The crude mixture obtained from the addition of methyllithium (3.30 mmol) to the corresponding acid complex ${ }^{2 \mathrm{c}}$ ($0.37 \mathrm{~g}, 1.32 \mathrm{mmol}$) was purified via flash column chromatography (silica gel, 1:5 ethyl acetate/hexanes) to give 7a (0.15 g , $0.50 \mathrm{mmol}, 38 \%$) as a yellow oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3069,3058,3050$, 3044, 2993, 2982, 2928, 2854, 2043, 1958, 1713, 1460, 1367, 1158, 807, $795 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.46$ ($\mathrm{m}, 1$ H), $5.30(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.12$ (s, 3 H), $1.86(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.03(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.4 M Hz, CDCl3) $\delta 211.4,208.6,90.8,86.9,59.4,42.8$, 40.9, 29.8, 28.2, 26.7; MS (70 eV) m/e (rel intensity) 278 (M^{+}, 2), 250 (5), 222 (34), 194 (100); HRMS (EI) m/e calcd for $\mathrm{C}_{11} \mathrm{H}_{14^{-}}$ $\mathrm{FeO}_{3}\left(\mathrm{M}^{+}-\mathrm{CO}\right) 250.0292$, found 250.0293.
[(7-10- $\boldsymbol{\eta}$)-cis-7,9-Decadien-2-one]tricarbonyliron Complex (7b). The crude mixture obtained from the addition of methyllithium (3.05 mmol) to the corresponding acid complex² ($0.36 \mathrm{~g}, 1.22 \mathrm{mmol}$) was purified via flash column chromatography (silica gel, 1:5 ethyl acetate/hexanes) to give $\mathbf{7 b}(0.15 \mathrm{~g}$, $0.51 \mathrm{mmol}, 42 \%$) as a yellow oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3083,3007,2940$, 2047, 1971, 1711, 1609, 1460, 1362, $1092 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.41(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H})$, $2.37(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.60-$ $1.35(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 3 \mathrm{H}), 1.05(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100.4 $\mathrm{MHz}, \mathrm{CDCI} 3) \delta 211.3,208.9,90.6,87.0,60.0,43.4,40.8,32.4$, 29.9, 28.5 23.1; MS (70 eV) m/e(rel intensity) 292 (${ }^{+}$, 5), 264 (6), 236 (24), 208 (100), 140 (46); HMRS (EI) m/e calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{FeO}_{3}\left(\mathrm{M}^{+}-\mathrm{CO}\right)$ 264.0449, found 264.0441.
[(6-9- η)-cis-6,trans-8-Decadien-2-one]tricarbonyliron Complex (8a). The crude mixture obtained from the addition of methyllithium (13.3 mmol) to the corresponding acid complex ${ }^{4 a}$ ($1.55 \mathrm{~g}, 5.31 \mathrm{mmol}$) was purified via flash col umn chromatography (silica gel, 1:5 ethyl acetate/hexanes) to give $8 \mathbf{a}(0.54 \mathrm{~g}, 1.86 \mathrm{mmol}, 35 \%)$ as a yellow oil: IR ($\mathrm{CH}_{2}-$ Cl_{2}) 3059, 3036, 2984, 2982, 2040, 1968, 1714, 1607, 1426, 1418, $1283 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.24$ (dd, J = $9.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, \mathrm{J}=7.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~m}, 1 \mathrm{H})$, $2.36(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~m}$, $1 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}) 1.43(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.4 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 211.9,208.5,94.6,82.2,59.0,57.8$, 42.9, 29.9, 28.7, 26.9, 20.2; MS (70 eV) m/e (rel intensity) 292 ($\mathrm{M}^{+}, 32$), 264 (18), 236 (44), 208 (100), 180 (10), 152 (7), 134 (29), 110 (6); HRMS (EI) m/e calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{FeO}_{4}\left(\mathrm{M}^{+}\right)$ 292.0398, found 292.0390 .
[(7-10- $\boldsymbol{\eta}$)-cis-7,trans-9-Undecadien-2-one]tricarbonyliron Complex (8b). The crude mixture obtained from the addition of methyllithium (16.3 mmol) to the corresponding acid complex ${ }^{4 a}(2.0 \mathrm{~g}, 6.53 \mathrm{mmol})$ was purified via flash column chromatography (silica gel, 1:5 ethyl acetate/hexanes) to give $\mathbf{8 b}(0.76 \mathrm{~g}, 2.48 \mathrm{mmol}, 35 \%)$ as a yellow oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3059$, 3017, 2955, 2039, 1966, 1713, 1607, 1426, 1420, $1092 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.23(\mathrm{dd}, \mathrm{J}=9.3,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, 5.11 (dd, J = 7.9, 4.9 Hz, 1 H), $2.43(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{t}, \mathrm{J}=7.4$ Hz, 1 H), 2.31 (m, 2 H), 2.12 (s, 3H), 1.60-1.52 (m, 2 H), 1.44 $(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 3 \mathrm{H}) 1.37-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.9,208.5,94.5,82.3,59.6,57.6$, 43.4, 33.0, 29.9, 29.0, 23.2, 20.2; MS (70 eV) m/e(rel intensity) 306 (M+ 26), 278 (7), 250 (26), 222 (100), 194 (3), 166 (7), 140 (86); HRMS (EI) m/e calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{FeO}_{4}\left(\mathrm{M}^{+}-3 \mathrm{CO}\right)$ 222.0707, found 222.0715 .
[(6-9-ף)-8-Methyl-cis-6,8-nonadien-2-one]tricarbonyliron Complex (9). The crude mixture obtained from the addition of methyllithium (26.5 mmol) to the corresponding acid complex ${ }^{4 \mathrm{a}}$ ($2.4 \mathrm{~g}, 10.6 \mathrm{mmol}$) was purified via flash column chromatography (silica gel, 1:5 ethyl acetate/hexanes) to give $9(0.50 \mathrm{~g}, 1.71 \mathrm{mmol}, 21 \%)$ as a yellow oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3055$, 3047, 2991, 2984, 2040, 1958, 1713, 1421, 1279, 1262, cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.21(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-$ 2.34 (m, 3 H), 2.17(s, 3 H), 2.11(s, 3 H), 1.87 (m, 1 H), 1.67-
$1.46(\mathrm{~m}, 4 \mathrm{H}), 1.05(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 211.3, 208.6, 108, 86.7, 55.7, 43.4, 42.9, 30.0, 28.1, 27.0, 24.4; MS (70 eV) m/e (rel intensity) 292 ($20, \mathrm{M}^{+}$), 264 (21), 236 (28), 208 (100), 179.9 (6), 148 (44), 96 (7); HRMS (EI) m/e calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{FeO}_{4} 292.0398\left(\mathrm{M}^{+}\right)$, found 292.0402.
(1S*,2R*,5R*)-2-Methylbicyclo[4.3.0]non-8-en-2-ol (11). The crude mixture obtained from the intramolecular radical addition of complex $\mathbf{3}(0.51 \mathrm{~g}, 1.72 \mathrm{mmol})$ was purified via flash column chromatography (silica gel, 1:20 ethyl acetate/hexanes) to give $\mathbf{1 1}(0.14 \mathrm{~g}, 0.93 \mathrm{mmol}, 54 \%)$ as a colorless oil: IR $\left(\mathrm{CH}_{2}-\right.$ Cl_{2}) 3059, 3025, 2984, 2932, 2872, 1712, 1676, 1454, 1423, $1377,1356,1271,1252,1101,922,899,870,841 \mathrm{~cm}^{-1}$; 1 H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.81$ (dd, J $=6.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.65(\mathrm{~m}, 1$ H), $2.54(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H})$, $1.65(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100.4 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 128.8,126.7,81.8,50.3,39.6,35.0,27.2,25.6$, 25.4, 21.8; MS (70 eV) m/e (rel intensity) 152 ($\mathrm{M}^{+}, 42$), 135 (100), 119 (26), 109 (21), 94 (64), 92 (64), 83 (49); HRMS (EI) m / e calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}\left(\mathrm{M}^{+}\right)$152.1201, found 152.1209.
(15*,2S**)-2-Methylbicyclo[4.3.0]non-5-en-2-ol (12). The crude mixture obtained from the intramolecular radical addition of complex $4(0.53 \mathrm{~g}, 1.85 \mathrm{mmol})$ was purified via flash column chromatography (silica gel, 1:20 ethyl acetate/hexanes) to give 12 ($82 \mathrm{mg}, 0.55 \mathrm{mmol}, 30 \%$) as a colorless oil: IR ($\mathrm{CH}_{2}{ }^{-}$ Cl_{2}) 3598, 3518, 3059, 2988, 2938, 2865, 1669, 1609, 1451, $1379,1341,1300,1217,1107 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.37(\mathrm{t}, \mathrm{J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.13$ (m, 1 H), 1.99 (m, $2 H$ H), 1.85-1.83 (m, 2 H), 1.78-1.72 (m, 2 H), 1.70-1.61 (m, 1 H$), 1.45(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.1,119.3,79.5,51.4,39.7,29.1,25.0$, 22.5, 22.1, 22.0; MS (70 eV) m/e (rel intensity) $152\left(30, \mathrm{M}^{+}\right.$), 133 (8), 123 (7), 109 (33), 94 (52), 84 (64), 82 (100), 67 (18); HRMS (EI) m/e calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}\left(\mathrm{M}^{+}\right) 152.1201$, found 152.1206.
(1R*,2S*,5R*)-2-Hydroxy-2-methylbicyclo[4.3.0]nonan-8-one (13). The crude mixture obtained from the intramolecular radical addition of complex 5 ($0.51 \mathrm{~g}, 1.58 \mathrm{mmol}$) was purified via flash column chromatography (silica gel, 1:20 ethyl acetate/hexanes) to give $\mathbf{1 3}(0.24 \mathrm{~g}, 1.40 \mathrm{mmol}, 88 \%)$; IR ($\mathrm{CH}_{2}-$ Cl_{2}) 3686, 3597, 3377, 3067, 3045, 2991, 2930, 2866, 2060, 1983, 1697, 1606, 1456, 1419, 1381, 1296, 1284, 1267, 1255, $1244,1219,1097,1014,976,908,879,858 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.47(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.18$ (m, 1 H), 2.17 (m, 2 H), $1.75(\mathrm{~m}, 2$ H), $1.69(\mathrm{~m}, 2$ H), 1.26 (m, $2 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.8,69.6$, 58.5, 38.7, 34.6, 29.8, 29.4, 28.7, 28.0, 25.7; MS (70 eV) m/e (rel intensity) 168 ($\mathrm{M}^{+}, 33$), 153 (22), 132 (44), 122 (98), 149 (100), 106 (23), 93 (18); HRMS (EI) m/e cal cd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right.$) 168.1014, found 168.1156.
(1S*,2R*,5R*)-2-Methylbicyclo[5.3.0]deca-9-en-2-ol (20). The crude mixture obtained from the intramolecular radical addition of complex $\mathbf{6 a}(0.35 \mathrm{~g}, 1.16 \mathrm{mmol})$ was purified via flash column chromatography (silica gel, 1:20 ethyl acetate/ hexanes) to give ketone 20 ($91 \mathrm{mg}, 0.53 \mathrm{mmol}, 49 \%$) as a colorless oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3694,3404,3168,3072,3006,2966$, 2670, 2474, 2418, 2316, 2292, 2254, 2106, 1905, 1556, 1439, 1431, 1410, 1363, 1307, 1222, 1092, 1036, 918, 905, $905 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.59(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H})$, $2.22(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 4 \mathrm{H}), 1.25$ ($\mathrm{m}, 2 \mathrm{H}$), $1.23(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 131.2$, 128.0, 83.5, 55.6, 41.2, 40.2, 30.4, 30.3, 29.6, 25.5, 24.0; MS (30 eV) m/e (rel intensity) 165 ($\mathrm{M}^{+}, 27$), 149 (25), 147 (68), 123 (20), 120 (27), 119 (91), 105 (25), 93 (27), 91 (100), 79 (25), 67 (18), 51 (10); HRMS (EI) m/e calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}\left(\mathrm{M}^{+}\right)$166.1357, found 166.1445 .
(1S*,2R*,6R*)-2-Methylbicyclo[5.4.0]undeca-10-en-2ol (21). The crude mixture obtained from the intramolecular radical addition of complex $\mathbf{6 b}(0.20 \mathrm{~g}, 0.63 \mathrm{mmol})$ was purified via flash column chromatography (silica gel, 1:20 ethyl acetate/ hexanes) to give $\mathbf{2 1}$ ($23 \mathrm{mg}, 0.13 \mathrm{mmol}, 21 \%$) as a col orless oil:

IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 3686, 3597, 3385, 3057, 3045, 3022, 2989, 2932, 2858, 2062, 1988, 1666, 1608, 1448, 1423, 1377, 1313, 1269, 1248, 1217, 1107, 933, 914, 879, 858, 842, 817, 810, 800, 788 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.71(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{dd}, \mathrm{J}$ $=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~m}, 3 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H})$, $1.59(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~m}, 2 \mathrm{H})$, 1.21(s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 130.7,130.5,72.7$, 49.1, 35.4, 34.2, 34.0, 29.6, 29.4, 27.3, 21.9, 21.2; MS (30 eV) m / e (rel intensity) $180\left(\mathrm{M}^{+}, 19\right), 179$ (1), 163 (10), 162 (74), 147 (52), 133 (57), 122 (69), 120 (63), 107 (41), 105 (56), 93 (56), 91 (80), 79 (100), 77 (51), 67 (46), 55 (52), 53 (32), 51 (11); HRMS (EI) m/e calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}\left(\mathrm{M}^{+}\right) 180.1514$, found 180.1454.
(1R*,2S*)-2-(trans-1-Propenyl)-1-methylcyclopentanol (22). The crude mixture obtained from the intramolecular radical addition of complex $7 \mathrm{a}(0.15 \mathrm{~g}, 0.54 \mathrm{mmol})$ was purified via flash column chromatography (silica gel, 1:20 ethyl acetate/hexanes) to give 22 ($32 \mathrm{mg}, 0.19 \mathrm{mmol}, 36 \%$): IR (CH_{2-} Cl_{2}) 3680, 3597, 3458, 3076, 3057, 2997, 2962, 2876, 2048, 1975, 1834, 1639, 1448, 1379, 1302, 1194, 1122, 1001, 974, 937 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.50(\mathrm{dt}, \mathrm{J}=15.2,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.33$ (dd, J $=15.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.60$ (m, 5 H$), 1.50-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.4 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 131.3,126.4,80.9,54.4,40.1,29.8,23.7,20.6$, 18.1.
(1R*,2S*)-2-(trans-1-Propenyl)-1-methylcyclohexaneol (23). The crude mixture obtained from the intramolecular radical addition of complex $7 \mathbf{b}$ ($0.15 \mathrm{~g}, 0.51 \mathrm{mmol}$) was purified via flash column chromatography (silica gel, 1:20 ethyl acetate/hexanes) to give 23 ($50 \mathrm{mg}, 0.34 \mathrm{mmol}, 67 \%$) as a col orless oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3062,3054,3049,2991,2984,2935$, 1654, 1560, 1438, 1425, 1283, 1248, 1098, 911, 888, $847 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.54(\mathrm{dt}, \mathrm{J}=15.0,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.37 (dd, J $=15.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.04 ($\mathrm{m}, 1 \mathrm{H}$), 1.78-1.65 (m, $3 \mathrm{H}), 1.71(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{~s}, 3$ $\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 125.7,121.8,66.2,46.1$, 34.2, 24.1, 19.4, 17.9, 16.1, 12.3; MS (70 eV) m/e(rel intensity) 154 (M+, 94), 139 (43), 136 (54), 125 (55), 111 (93), 96 (100), 71 (50); HRMS (EI) m/e cal cd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}\left(\mathrm{M}^{+}\right) 154.1358$, found 154.1355.
(1R*,2S*)-2-(trans-1-Butenyl)-1-methylcyclopentanol (24). The crude mixture obtained from the intramolecular radical addition of complex $8 \mathbf{a}(0.65 \mathrm{~g}, 2.23 \mathrm{mmol})$ was purified via flash column chromatography (silica gel, 1:20 ethyl acetate/ hexanes) to give 24 ($0.15 \mathrm{~g}, 0.78 \mathrm{mmol}, 35 \%$): IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $3380,3073,3039,2997,2992,2974,1988,1608,1437 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.44$ (m, 2 H), 2.16 ($\mathrm{m}, 1 \mathrm{H}$), 1.90 (m, 2 H), 1.77-1.67 (m, 4 H), 1.64-1.58 (m, 2 H), 1.16 (s, $3 \mathrm{H}), 0.79(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 130.5$, $125.8,80.7,50.2,41.0,33.6,29.3,22.9,20.3,17.9$; MS (30 eV) m / e (rel intensity) 154 (M+, 3), 153 (10), 136 (17), 123 (10), 107 (53), 89 (35), 77 (100), 57 (67); HRMS (EI) m/e calcd for $\mathrm{C}_{10} \mathrm{H}_{16}\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right) 136.1252$, found 132.1246 .
(1R*,2S*)-2-(trans-1-Butenyl)-1-methylcyclohexanol (25). The crude mixture obtained from the intramolecular radical addition of complex $\mathbf{8 b}(0.24 \mathrm{~g}, 0.78 \mathrm{mmol})$ was purified via flash column chromatography (silica gel, 1:20 ethyl acetate/ hexanes) to give $\mathbf{2 5}$ ($72 \mathrm{mg}, 0.41 \mathrm{mmol}, 53 \%$) as a colorless oil: IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 3391, 3063, 3050, 2986, 2936, 1620, 1460, 1421, $1258,857 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.43(\mathrm{~m}, 2 \mathrm{H})$, 2.37 (m, 1 H$), 1.69-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.39-1.13(\mathrm{~m}, 5 \mathrm{H}), 1.09(\mathrm{~s}$, $3 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=11.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 130.9,126.2,73.3,48.0,42.0,33.4,29.1,25.6,24.0,21.0,17.9 ;$ MS (30 eV) m/e(rel intensity) 168 ($\mathrm{M}^{+}, 15$), 153 (17), 151 (100), 135 (5), 125 (16), 110 (17), 95 (22), 79 (25); HRMS (EI) m/e calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}\left(\mathrm{M}^{+}\right)$168.1514, found 168.1519.
(1R*,2S*)-1-Methyl-2-(2-methylpropenyl)cyclohexanol (26). The crude mixture obtained from the intramolecuIar radical addition of complex $9(0.51 \mathrm{~g}, 1.67 \mathrm{mmol})$ was purified via flash column chromatography (silica gel, 1:20 ethyl acetate/hexanes) to give 26 ($0.18 \mathrm{~g}, 1.05 \mathrm{mmol}, 63 \%$) as a
colorless oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3596,3401,3067,3050,2990,2975$, 2935, 2859, 1645, 1445, 1424, 1379, 1157, $1128 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H})$, 1.74 (s, 3 H), 1.76-1.19 (m, 9 H), 1.13 (s, 3 H), 0.94 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($\left.100.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.4,111.7,73.3,45.3,42.0$, 38.8, 29.1, 25.6, 24.0, 22.2, 21.0; MS (70 eV) m/e(rel intensity) 168 (${ }^{+}, 10$), 153 (11), 151 (95), 150 (100), 153 (63), 125 (37),

108 (46), 97 (30), 95 (90), 81 (37), 69 (48); HRMS (EI) m/ecalcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}\left(\mathrm{M}^{+}\right)$168.1514, found 168.1521.

Acknowledgment. Support for this research from the National Science Council (87-2113-M-003-009) of the Republic of China is gratefully acknowledged.

OM980663D

[^0]: (1) (a) Semmel hack, M. F.; Herndon, J. W. Organometallics 1983, 2, 363. (b) Semmel hack, M. F.; Herndon, J . W.; Liu, J. K. Organome tallics 1983, 2, 1885. (c) Semmel hack, M. F.; Herndon, J W. W.; Springer, J. P. J. Am. Chem. Soc. 1983, 105, 2497. (d) Semmel hack, M. F.; Le, H. T. M. J. Am. Chem. Soc. 1984, 106, 2715. (e) Semmelhack, M. F.; Herndon, J . W. J. Organomet. Chem. 1984, 265, C15. (f) Semmelhack, M. F.; Le, H. T. M. J . Am. Chem. Soc. 1985, 107, 1455. (g) Yeh, M. C. P.; Kang, K. K.; Hwu, C. C. J. Chin. Chem. Soc. 1991, 38, 475
 (2) (a) Graf, R. E.; Lillya, C. P. J. Organomet. Chem. 1976, 122, 377. (b) Birch, A. J.; Pearson, A. J. J . Chem. Soc., Chem. Commun. 1976, 601. (c) Yeh, M. C. P.; Chuang, L. W.; Chang, S. C.; Lai, M. L.; Chou, C. C. Organometallics 1997, 16, 4435.
 (3) (a) Birch, A. J.; Hass, M. A. J. Chem. Soc. C 1971, 2465. (b) Pearson, A. J. In Chemistry of Carbon-Metal Bond; Hartley, F. R., Patai, S., Eds.; Wiley: Chichester, 1987; Vol. 14, Chapter 10. (c) Pearson, A. J.; Zettler, M. W. J. Am. Chem. Soc. 1989, 111, 3908.
 (4) (a) Yeh, M. C. P.; Sheu, B. A.; Fu, H. W.; Tau, S. I.; Chuang, L. W. J . Am. Chem. Soc. 1993, 115, 5941. (b) Yeh, M. C. P.; Chuang, L. W.; Hwu, C. C.; Sheu, J. M.; Row: L. C. Organometallics 1995, 14, 3396.
 (5) (a) Molander, G. A.; Harris, C. R. J . Org. Chem. 1997, 62, 7418. (b) Molander, G. A.; Harris, C. R. Chem Rev. 1996, 96, 307. (c) Molander, G. A.; McKie, J. A. J. Org. Chem. 1992, 57, 3132 . (d) Fukuzawa, S.; Nakanishi, A.; Fujinami, T.; Sakai, S. J . CChem. Soc., Perkin Trans. 1 1988, 1669.

[^1]: (6) (a) Schmalz, H.-G.; Siegel, S.; Bats, J. W. Angew. Chem., Int. Ed. Engl. 1995, 34, 2383. (b) Schmalz, H.-G.; Siegel, S.; Schwarz, A. Tetrahedron Lett. 1996, 37, 2947.
 (7) In our preliminary examples, a simple (η^{6}-arene)tricarbonylchromium(0) complex, such as ($\eta^{6}-4$-phenyl-2-butanone)tricarbonylchromium(0) failed to undergo intramolecular radical cyclization using Schmalz's conditions. The reduced alcohol was isolated as the major product in 45% yield.

[^2]: (9) Cheney, B. V.; Grant, D. M. J. Am. Chem. Soc. 1967, 89, 5319
 (10) Yadav, V.; Fallis, A. G. Can. J . Chem. 1991, 69, 779.
 (11) Beckwith, A. L. J . Tetrahedron 1981, 37, 3073.

[^3]: (12) (a) Chang, S.; White, P. S.; Brookhart, M. Organometallics 1993, 12, 3636. (b) Brookhart, M.; Yoon, J.; Noh, S. K. J. Am. Chem. Soc. 1989, 111, 4117.
 (13) Still, W. C.; Kahn, M.; Mitra, A. J . Org. Chem. 1978, 43, 2923.

[^4]: (14) Samarium(II) diiodide was prepared from samarium powder and 1,2-di iodoethane following the literature procedure. Kagan, H. B.; Girard, P.; Namy, J. L. J . Am. Chem. Soc. 1980, 102, 2693.
 (15) Blankenfeldt, W.; Liao, J. W.; Lo, L. C.; Yeh, M. C. P. Tetrahedron Lett. 1996, 37, 7361.

