Rhodium(I)-Catalyzed Intramolecular Cyclohexadienyl Pauson-Khand Reaction: Facile Approach to Tricarbocycles

Ming-Chang P. Yeh,* Wen-Cheng Tsao, J in-Shen Ho, Chih-Chuan Tai, Dai-Yu Chiou, and Ling-Hsien Tu
Department of Chemistry, National Taiwan Normal University, 88 Ding-J ou Road, Section 4, Taipei 117, Taiwan

Received October 14, 2003

Abstract

The rhodium-catalyzed Pauson-K hand reaction (PKR) of cyclohexa-1,3-dienes containing two methylene carbons and an alkyne in a chain produced regular PKR products. Cyclohexadienynes bearing three methylene units and a aromatic ring at the alkyne afforded regular PKR products and angularly fused tricyclic compounds, which were derived from diene migration followed by the PKR process.

Introduction

The cobalt-medi ated formal [$2+2+1]$ cycloaddition reaction of an alkyne, an alkene, and carbon monoxide moieties, the Pauson-Khand reaction (PKR hereafter), is a powerful tool to construct cyclopentenone derivatives ${ }^{1}$ and is being widely used in natural product synthesis. ${ }^{2}$ Particularly, the possibility of achieving complex molecules containing a cyclopentenone moiety in a stereoselective fashion and in a single step has made this reaction especially attractive. Besides cobalt, ${ }^{3}$ other transition metals, such as rhodium, ${ }^{4}$ ruthenium, ${ }^{5}$ and iridium, ${ }^{6}$ have been shown to catal yze the reaction. Recently, allenes have been used in place of olefins in the Pauson-Khand-type $[2+2+1]$ cyclization. ${ }^{7}$ This allenic type PKR has enhanced the great synthetic

[^0]utility toward the synthesis of complex organic molecules. ${ }^{8}$ In the past few years, we have developed an easy synthetic route to cycl ohexa-1,3-di ene derivatives containing a functional group at the C-5 position. To continue our effort on these substrates, we have focused on the cyclohexadienyl version of the PKR in our laboratories. ${ }^{9}$ In this contribution, we report the PKR of cyclohexadienynes, which proceeds smoothly to afford tricarbocycles. For cyclohexadienynes tethering three methylene units and an aromatic ring at the alkyne, the cycloadditions generate the regular PKR products and angularly fused tricyclic compounds, which are derived from diene migration followed by the PKR process.

Results and Discussion

The starting alkynes la-i were prepared from addition of the corresponding alkynylzinc-copper reagents to the (η^{5}-cycl ohexadienyl) tricarbonyl iron cation salt in THF according to literature procedures. ${ }^{10}$ Decomplexation of the resulting complexes with cerium ammonium nitrate (CAN) in acetone at $0^{\circ} \mathrm{C}$ afforded the starting substrates 1a-i in good yields (Scheme 1). ${ }^{11}$ Aromatic substrates $\mathbf{2 a} \mathbf{a} \mathbf{b}$ were synthesized in a similar fashion starting from addition of the corresponding aromatic alkynyllithium-copper reagents to the (η^{5}-cyclohexadienyl)tricarbonyliron cation salt in THF (Scheme 2).
Under our optimized reaction conditions, intramolecular PKR of cyclohexadienyne derivatives la-i and $2 \mathbf{a}, \mathbf{b}$ using $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}(1.0 \mathrm{~mol} \%)$ under an atmo-

[^1]Scheme 1

a : $\mathrm{R}_{1}=\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{n}=2$
b: $\mathrm{R}_{1}=p-\mathrm{Tol}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{n}=2$
c: $\mathrm{R}_{1}=\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{SiMe}_{2} \mathrm{Ph}, \mathrm{n}=2$
$\mathbf{d}: \mathrm{R}_{1}=\mathrm{SiMe}_{3}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{n}=2$
e: $\mathrm{R}_{1}=\mathrm{SiMe}_{3}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{n}=3$
f: $\mathrm{R}_{1}=\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{SiMe}_{2} \mathrm{Ph}, \mathrm{n}=3$
$\mathbf{g}: \mathrm{R}_{1}=\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{n}=3$
h: $\mathrm{R}_{1}=p-\mathrm{Tol}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{n}=3$
$\mathbf{i}: \mathrm{R}_{1}=\mathrm{Np}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{n}=3$
Scheme 2

1. Li
2. $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}$

2
a: $\mathrm{R}=\mathrm{Ph}$
b: $\mathrm{R}=\mathrm{SiMe}_{3}$
spheric pressure of CO in dibutyl ether with substrate concentrations at 0.1 M were investigated, and the results are listed in Table 1. Refluxing a dibutyl ether solution of cyclohexadienyne 1a (entry 1, Table 1) and $1.0 \mathrm{~mol} \%$ of $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ under 1.0 atm of CO for 6 h generated the tricyclo[5.3.1.0 ${ }^{4,11}$]undecadienone derivative 3 in 93% yield after flash column chromatography. NOE experiments provided the initial evidence for support of all syn relationships between hydrogen atoms at $\mathrm{C}(\mathrm{a}), \mathrm{C}(\mathrm{b})$, and $\mathrm{C}(\mathrm{c})$ of $\mathbf{3}$. F urther proof of the structure of $\mathbf{3}$ was accomplished by X-ray diffraction analysis. It is important to note that three new contiguous stereo-

Scheme 3

4b
genic centers of tricyclic compound $\mathbf{3}$ are created with extreme diasteroselectivity; however, only the single diastereomer shown was isolated. This stereochemical outcome can be rationalized in the framework of the suggested rhodium-alkyneintermediate 4a (Scheme 3), if one assumed that the intermediate $\mathbf{4 b}$ arising from the attack of the rhodium-alkyne species at the β-face of the olefin would lead to 3, which has all syn relationships among the three adjacent protons. However, treatment of substrate $\mathbf{1 a}$ using the reported protocol ${ }^{9}$ for acyclic dieneynes ($\left[\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ ($1.0 \mathrm{~mol} \%$), AgSbF_{6} (1 mol \%), CO (1.0 atm), 1,2-dichloroethane, room temperature, 3 days) produced 3 in 38\% yield after separation of the crude mixture on silica gel. Substrates with two methylene units and a p-tolyl group at the alkyne, for example, compound $\mathbf{1 b}$, gave the PKR product 5^{12} (entry 2, Table 1) in 57% yield. Substrate 1c with a phenyldimethylsilyl group at the 3-position of the cycl ohexadiene ring afforded tricyclic compound 6 (77\%, entry 3, Table 1) and a trace of the desilylation product, which is identical with compound 3. With a trimethylsilyl group at the alkyne, substrate 1d (entry 4, Table 1) also produced the regular PKR products 7a (52\%) and the desilylation product 7b (13\%). Similarly, cyclohexadienyne $\mathbf{1 e}$ (entry 5, Table 1), with three methylene units and a silyl group at the terminal alkyne, gave tricyclo[6.3.1.0 ${ }^{4,12}$]dodecadienone derivative 8a (63\%) and the desilylation product 8b (20\%). Also, substrate $1 f$ (entry 6, Table 1) afforded the PKR product $\mathbf{9 a}$ (48\%) and the desilylation product $\mathbf{9 b}^{12}$ (23\%). To understand the desilylation process, compound 7a was treated with $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}(1.0 \mathrm{~mol} \%)$ under an atmospheric pressure of CO in dibutyl ether. The reaction mixture was stirred at reflux for 24 h . TLC clearly showed that the crude mixture contained both 7 a and 7b. Also, the ratio of $\mathbf{7 a}$ and $\mathbf{7 b}$ was determined to be 1:2 by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Thus, it is reasonable to state that the desilylation may occur by attack of a chloride anion at the silicon atom under the harsh reaction conditions ($145{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$). Interestingly, cycloaddition of substrate $\mathbf{1 g}$ (entry 7, Table 1), bearing three methylene units and a phenyl group at the alkyne, produced the usual PKR product 9b (57\%) and the angularly fused tricyclic compound 10 (34\%), which contains a quaternary carbon center. Under the same

[^2]Yeh et al.
Table 1. Catalytic Intramolecular Pauson-Khand Reaction Cyclization of Cyclic Dienes Containing a Tethered Alkyne Using $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}(1.0 \mathrm{~mol} \%)$ and $\mathrm{CO}(1.0 \mathrm{~atm})$ in Refluxing Dibutyl Ether

entry	Dienyne	time (h)	Products	Yield
1	 1a	6		93\%
2	 1b	12	 5	57\%
3	 1c	12	 6 3 (trace)	77\%
4	 1d	12	 $7 a$ 7b $4: 1$	65\%
5	 1 e	10	 $3: 1$	83\%
6	 1f	12	 2:1	71\%
7		10	 $3: 2$	91\%
8		10	 11a 11b $1: 1$	57\%
9	 1i	10	 12a $1: 2$ 12b	70\%
10	 $2 a$	10	 13	95\%
11	 2b	10	 14	35\%
12	 16	16	 17	14\%

Scheme 4

reaction conditions, substrates $\mathbf{1 h}$ (entry 8 , Table 1) and 1i (entry 9, Table 1) produced both the regular cycloadducts 11a ${ }^{12}$ (29\%, from 1h) and 12a (23\%, from 1i) and angularly fused tricyclic compounds 11b (28\%, from 1h) and $\mathbf{1 2 b}(47 \%$, from $\mathbf{1 i})$, respectively. Cyclohexadienynes $\mathbf{2 a}$ and $\mathbf{2 b}$, which contain a benzene tether, also gave the PKR products $\mathbf{1 3}^{12}$ (93% from 2a; entry 10, Table 1) and 14 (35\% from 2b; entry 11, Table 1). Several entries in Table 1 deserve special mention. Reactions of substrates $\mathbf{1 a} \mathbf{- d}$, with a two-methylene tether, proceeded smoothly to give only the regular PKR products in each case. However, substrates containing three methylene units underwent different reaction paths, depending on the substituents at the dienynes. Substrates with a silyl group at the alkyne (for example, 1e) or at the C-3 position of the cyclohexadiene ring (for example, 1f) provided only PKR products. Substrates $\mathbf{1 g - i}$, bearing an aryl, tolyl, or naphthyl group at the alkyne, gave both regular PKR products and angularly fused tricarbocycles. The difference is explained in Scheme 4. The presence of the silyl group in the postulated intermediate 15a may facilitate the cycloaddition to afford PKR products as the major products (path a). With an aromatic group at the alkyne, the postulated intermediate 15b may require higher activation energy to give a seven-membered-ring transition state. Thus, detachment of the alkene ligand from the metal center occurred to give 15c (path b). Intermediate 15c could undergo double-bond migration to generate the C-1-substituted dienyne 15d. Alternatively, intermediate 15b could undergo β-hydride elimination/readdition to give 15d (path c). I ntermediate 15d led to the angularly fused tricyclic compounds 10b, 11b, and 11c after the PKR process.

This chemistry can be extended to a seven-memberedring substrate. Thus, cycloheptadienyne derivative 16 underwent PKR using the same reaction protocol to produce 17 in a 14\% yield (entry 12, Table 1). However, it must be mentioned that terminal dieneyne 18a, (methylthio)alkyne 18b, ${ }^{13}$ or alkylidene cyclohexene derivatives 19a,b failed to produce any PKR product.

18a: $\mathrm{R}=\mathrm{H}$
18b : R = SMe
19a: $\mathrm{n}=2$
19b : $\mathrm{n}=3$

Moreover, cycloheptatrienyne substrate $\mathbf{2 0}$ gave no conversion on reflux in dibutyl ether for 96 h .

The reactions outlined herein demonstrate that [RhCl$\left.(\mathrm{CO})_{2}\right]_{2}$ is an effective catalyst for PKR of cyclic dienynes. The ability to achieve excellent stereocontrol of three steregenic centers of fairly complex tricydic skeletons in a simple reaction may have further applications.

Experimental Section

General Considerations. All reactions were run under a nitrogen atmosphere in oven-dried glassware unless otherwise
(13) Although (methylthio)alkynes have been shown to be superb participants in the $\mathrm{CO}_{2}(\mathrm{CO})_{8}$-catalyzed Pauson-K hand reaction, the $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ complex is ineffective toward 18b. Pagenkopf, B. L.; Belanger, D. B.; O'Mahony, D. J. R.; Livinghouse, T. Synthesis 2000, 7, 1009.
indicated. Anhydrous solvents or reaction mixtures were transferred via an oven-dried syringe or cannula. Dibutyl ether was distilled under nitrogen over CaH_{2}. Flash column chromatography, following the method of Still, was carried out with E. Merck silica gel (Kieselgel 60, 230-400 mesh) using the indicated solvents. ${ }^{14} \mathrm{H} \mathrm{H}$ nuclear magnetic resonance (NMR) spectra were obtained with Bruker-AV 400 (400 MHz), BrukerAV 500 (500 MHz), and Varian G-200 (200 MHz) spectrometers. Chemical shifts are reported in parts per million with either tetramethylsilane (0.00 ppm) or $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ as internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were recorded with Bruker-AV 400 (100 MHz), Bruker-AV 500 (125 MHz), and Varian G-200 (50 MHz) spectrometers with $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ as the internal standard. Infrared (IR) spectra were recorded with a JASCO IR-700 spectrometer. Mass spectra were acquired on a J EOL J MS-D 100 spectrometer at an ionization potential of 70 eV and are reported as mass/charge (m / e) with percent relative abundance. High-resolution mass spectra (HRMS) were obtained with an AEI MS-9 doublefocusing mass spectrometer and a J E OL JMS-HX 110 spectrometer at the Department of Chemistry, Central Instrument Center, Taichung, Taiwan.

General Procedure for the Synthesis of Starting Cyclohexadienyne Derivatives $\mathbf{1 a}-\mathbf{i}$. Zinc particles (1450 mesh, $9.6 \mathrm{~g}, 0.15 \mathrm{~mol}$) were placed in a dried three-necked round-bottom flask equipped with a dropping funnel, a thermometer, and a nitrogen outlet. To the flask were added 15.0 mL of THF and 1.0 mL of 1,2-dibromoethane. The reaction mixture was heated with a heat gun for 30 s and cooled to room temperature. The process was repeated two times before 1.0 mL of chlorotrimethylsilane was added via syringe. The mixture was stirred for 30 min before a THF (20 mL) solution of I ($\left.\mathrm{CH}_{2}\right)_{2} \mathrm{CCPh}(6.5 \mathrm{~g}, 25.4 \mathrm{mmol})$ was added via the dropping funnel. Normally, the zinc reagent was formed after stirring at $40-50^{\circ} \mathrm{C}$ for 6 h . Copper cyanide ($6.7 \mathrm{~g}, 75 \mathrm{mmol}$) was added to dried $\mathrm{LiCl}\left(150^{\circ} \mathrm{C}, 3 \mathrm{~h}\right.$ under vacuum, 6.30 g .0 .150 mol) in a Schlenk flask under nitrogen. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ before 50 mL of THF was added via syringe. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ until the solid was dissolved. The above solution was cooled to $-78{ }^{\circ} \mathrm{C}$, and the freshly prepared $\mathrm{IZn}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CCPh}$ was added dropwise to the reaction mixture. The resulting light green solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min , and the zinc-copper reagent $\mathrm{InCu}\left(\mathrm{CH}_{2}\right)_{2-}$ CCPh was ready to use. A sol ution of the zinc-copper reagent was added via cannula to a stirred suspension of (η^{5}-cyclohexadienyl) $\mathrm{Fe}(\mathrm{CO})_{3}$ cation salt ($5.2 \mathrm{~g}, 16.9 \mathrm{mmol}$) in 5 mL of THF at $5{ }^{\circ} \mathrm{C}$ under nitrogen. A homogeneous solution was obtained after the reaction mixture was stirred at $30^{\circ} \mathrm{C}$ for 2 h. The reaction mixture was then quenched with saturated aqueous ammonium chloride solution at $0^{\circ} \mathrm{C}$ and was diluted with 100 mL of 50% ethyl acetate/hexanes. The resultant solution was washed with water ($100 \mathrm{~mL} \times 3$) and brine (100 $\mathrm{mL} \times 3$), dried over anhydrous magnesium sulfate (10 g), and concentrated to give the crude mixture. To the crude iron complex ($3.8 \mathrm{~g}, 10.9 \mathrm{mmol}$) in 100 mL of acetone at $0^{\circ} \mathrm{C}$ under nitrogen was added cerium ammonium nitrate ($16.8 \mathrm{~g}, 30.6$ $\mathrm{mmol})$ in three portions. The reaction mixture was stirred at $30^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was then quenched with saturated aqueous sodium bicarbonate solution at $0{ }^{\circ} \mathrm{C}$ and was diluted with 100 mL of ether. The resultant solution was washed with water ($100 \mathrm{~mL} \times 3$) and brine ($100 \mathrm{~mL} \times 3$), dried over anhydrous magnesium sulfate (10 g), and concentrated to give the crude mixture.
General Procedure for $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$-Catalyzed Intramolecular Cyclohexadienyl Pauson-Khand Reactions. To an oven-dried two-necked round-bottom flask equipped with a stirrer bar and a condenser and capped with rubber septa was added $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}(3.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and 4 mL of dibutyl ether. The apparatus was evacuated (oil pump) and

[^3]filled with CO three times. To the reaction mixture was then added cyclohexadienyne 1a ($0.208 \mathrm{~g}, 1.0 \mathrm{mmol}$) in 6.0 mL of dibutyl ether. The resulting mixture was heated at reflux under a balloon of CO, vented through a bubbler. The reaction was monitored by TLC. The reaction mixture was cooled to room temperature after no la was detected. The mixture was filtered through a bed of Celite and concentrated to give the crude mixture.
4-(Cyclohexa-1,3-dien-5-yl)-1-phenylbutyne (1a). The crude mixture obtained from oxidation (CAN in acetone) of the corresponding iron complex ($3.8 \mathrm{~g}, 10.9 \mathrm{mmol}$) was purified by flash-column chromatography (silica gel, hexanes) to give 1a ($1.71 \mathrm{~g}, 8.22 \mathrm{mmol}, 75 \%$) as a colorless liquid: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $3503,3044,3060,2301,2122,1598,1518,1419,1258,1252$, $1017 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.29$ (m, 3 H), 5.88 (m, $2 H$), 5.78 (m, 2 H), 2.46 (m, 4 H), 2.02 (m, $1 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.44$, 131.77, 128.73, 128.23, 125.13, 123.58, 123.25, 121.81, 91.31, 81.23, 34.47, 34.19, 30.25, 17.31; MS (70 eV) m/e 208 (${ }^{+}$, 17), 180 (19), 129 (17), 128 (19), 117 (100), 115 (47), 91.0 (40), 79 (17), 77 (31); HRMS EI m/e calcd for $\mathrm{C}_{16} \mathrm{H}_{16}$ 208.1252, found 208.1250.

4-(Cyclohexa-1,3-dien-5-yl)-1-p-tolylbutyne (1b). The crude mixture obtained from oxidation (CAN in acetone) of the corresponding iron complex ($3.74 \mathrm{~g}, 10.3 \mathrm{mmol}$) was purified by flash-col umn chromatography (silica gel, hexanes) to give 1b ($1.79 \mathrm{~g}, 8.06 \mathrm{mmol}, 78 \%$) as a colorless liquid: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3601, 3063, 3044, 2309, 2302, 1606, 1510, 1449, 1437, 1374, $1267,1265,1022 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~m}$, 2 H), 7.06 (m, 2 H), 5.87 (m, 2 H), 5.77 (m, 2 H), 2.44 (m, 4 H), 2.32 (s, 3H), $2.01(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}) $\delta 137.48,131.41,131.37,130.56,128.93,125.69,124.05$, $120.86,89.02,80.75,33.12,31.71,28.07,21.26,16.77$; MS (70 eV) m/e 222 (${ }^{+}, 23$), 207 (25), 194 (16), 179 (18), 131 (100), 129 (90), 128 (42), 115 (33), 91 (52); HRMS EI m/e calcd for $\mathrm{C}_{17} \mathrm{H}_{18}$ 222.1409, found 222.1412.
4-(2-(Dimethylphenylsilyl)cyclohexa-1,3-dien-5-yl)-1phenylbutyne (1c). The crude mixture obtained from oxidation (CAN in acetone) of the corresponding iron complex (3.90 $\mathrm{g}, 1.87 \mathrm{mmol}$) was purified by flash-column chromatography (silica gel, hexanes) to give 1c ($0.44 \mathrm{~g}, 1.28 \mathrm{mmol}, 68 \%$) as a colorless liquid: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3503,3057,2927,2364,1696$, $1653,1419 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~m}, 2 \mathrm{H})$, $7.37(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{~m}, 3 \mathrm{H}), 6.06(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}), 5.97(\mathrm{~d}, \mathrm{~J}=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 3 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 1.97$ (m, 1 H), $1.79(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 0.35(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $1\left(00 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.05,138.26,134.01,133.82,131.54$, 128.94, 128.17, 127.73, 127.53, 126.21, 124.69, 123.91, 89.91, 80.78, 33.07, 32.80, 27.78, 16.99, -3.28; MS (70 eV) m/e 342 ($M^{+}, 16$), 225 (15), 206 (14), 167 (10), 149 (18), 136 (11), 135 (100), 117 (10); HRMS (EI) m/e calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{Si} 342.1804$, found 342.1803.
4-(Cyclohexa-1,3-dien-5-yl)-1-trimethylbutyne (1d). The crude mixture obtained from oxidation (CAN in acetone) of the corresponding iron complex ($1.10 \mathrm{~g}, 3.19 \mathrm{mmol}$) was purified by flash-column chromatography (silica gel, hexanes) to give 1d ($0.52 \mathrm{~g}, 2.55 \mathrm{mmol}, 80 \%$) as a colorless liquid: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3425, 3356, 3045, 2309, 2170, 1415, 1272, 1016, $1004 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.84(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{~m}, 2 \mathrm{H})$, $2.40(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 3 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 0.13$ (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 130.44, 125.61, 124.05, 124.02, 107.15, 84.48, 32.97, 31.73, 28.02, 17.25, 0.02.

5-(Cyclohexa-1,3-dien-5-yl)-1-trimethylpentyne (1e). The crude mixture obtained from oxidation (CAN in acetone) of the corresponding iron complex ($1.73 \mathrm{~g}, 4.83 \mathrm{mmol}$) was purified by flash-column chromatography (silica gel, hexanes) to give 1e ($0.88 \mathrm{~g}, 4.04 \mathrm{mmol}, 85 \%$) as a colorless liquid: ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.83(\mathrm{~m}, 2 \mathrm{H}), 5.68(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 4$ H), $1.94(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~m}, 4 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 131.17,125.79,124.03,123.78,107.30,84.43$, 33.55, 32.30, 28.48, 25.90, 19.88, 0.02.

5-(2-(Dimethylphenylsilyl)cyclohexa-1,3-dien-5-yl)-1phenylpentyne (lf). The crude mixture obtained from oxidation (CAN in acetone) of the corresponding iron complex (1.09 $\mathrm{g}, 2.20 \mathrm{mmol}$) was purified by flash-col umn chromatography (silica gel, hexanes) to give $\mathbf{1 f}$ ($0.61 \mathrm{~g}, 1.72 \mathrm{mmol}, 78 \%$) as a colorless liquid: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3443,3058,2984,2928,1653$, $1374,1299 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~m}, 2 \mathrm{H})$, 7.39 (m, 2 H), $7.34(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~m}, 3 \mathrm{H}), 6.04(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.96(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 3 \mathrm{H}), 1.53(\mathrm{~m}$, 1 H), $0.35(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.85$, 138.37, 134.01, 133.44, 131.54, 128.90, 128.18, 127.71, 127.50, $126.21,124.93,123.99,90.14,80.77,33.68,33.46,28.25,26.26$, 19.61, -3.28; MS (70 eV) m/e 356 ($\mathrm{M}^{+}, 6$), 339 (13), 261 (18), 165 (11), 136 (16), 135 (100), 121 (20), 105 (13), 91 (16), 71 (14); HRMS (EI) m/e calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{Si} 356.1960$, found 356.1948.

5-(Cyclohexa-1,3-dien-5-yl)-1-phenylpentyne (1g). The crude mixture obtained from oxidation (CAN in acetone) of the corresponding iron complex ($2.5 \mathrm{~g}, 6.9 \mathrm{mmol}$) was purified by flash-column chromatography (silica gel, hexanes) to give $\mathbf{1 g}$ ($1.00 \mathrm{~g}, 4.50 \mathrm{mmol}, 67 \%$) as a colorless liquid: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3506, 346, 3053, 3046, 2303, 2202, 1599, 1415, 1419, 1287, 1017, $1014 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.4(\mathrm{~m}, 2 \mathrm{H})$, 7.29 (m, 3 H), 5.86 (m, 2 H), 5.73 (m, 2 H), 2.41 (m, 4 H), 2.08 $(\mathrm{m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 131.59$, $131.29,128.24,127.55,125.96,124.06,123.82,90.14,80,76$, $33.71,32.44,28.56,26.05,19.50$; MS (70 eV) m/e205 (14), 191 (11), 178 (18), 143 (45), 142 (28), 141 (20), 129 (34), 128 (58), 115 (100), 91 (18); HRMS EI m/e calcd for $\mathrm{C}_{17} \mathrm{H}_{18}$ 222.1409, found 222.1338.

5-(Cyclohexa-1,3-dien-5-yl)-1-p-tolylpentyne (1h). The crude mixture obtained from oxidation (CAN in acetone) of the corresponding iron complex ($1.34 \mathrm{~g}, 3.56 \mathrm{mmol}$) was purified by flash-column chromatography (silica gel, hexanes) to give 1h ($0.60 \mathrm{~g}, 2.54 \mathrm{mmol}, 71 \%$) as a colorless liquid: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3497, 3066, 2936, 2322, 2312, 1509, 1434, 1427, 1277, 1262, 1246, $1014 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~m}, 2 \mathrm{H})$, 7.10 (m, 2 H), 5.86 (m, 2 H), 5.74 (m, 2 H), $2.40(\mathrm{~m}, 4$ H), 2.33 ($\mathrm{s}, 3 \mathrm{H}$), $2.21(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta ~ 137.52,131.45,131.33,128.98,125.98,124.06,123.81$, 120.94, 89.29, 80.76, 33.73, 32.44, 28.56, 26.11, 21.32, 19.51; MS (70 eV) m/e 236 (${ }^{+}$, 21), 221 (20), 194 (49), 179 (36), 141 (32), 131 (66), 129 (100), 128 (74), 115 (43), 79 (47); HRMS EI m / e calcd for $\mathrm{C}_{18} \mathrm{H}_{20}$ 236.1565, found 236.1559.

5-(Cyclohexa-1,3-dien-5-yl)-1-naphthylpentyne (1i). The crude mixture obtained from oxidation (CAN in acetone) of the corresponding iron complex ($1.96 \mathrm{~g}, 4.76 \mathrm{mmol}$) was purified by flash-column chromatography (silica gel, hexanes) to give 1i $(0.97 \mathrm{~g}, 3.57 \mathrm{mmol}, 75 \%)$ as a col orless liquid: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3603, 3508, 3042, 2988, 2359, 2304, 1431, 1273, 1245, 1017 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~m}, 7 \mathrm{H}), 5.86(\mathrm{~m}, 2$ H), 5.75 (m, 2 H), $2.55(\mathrm{t}, 2 \mathrm{H}), 2.34(\mathrm{~m}, 2 \mathrm{H}), 2.2(\mathrm{~m}, 1 \mathrm{H})$, $1.71(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 133.52, 133.21, 131.21, 130.01, 128.21, 127.93, 126.48, 126.29, 126.22, 125.92, $125.23,124.06,123.84,121.73,95.19,78.79,33.76,32.41$, 28.54, 26.17, 19.80; MS (70 eV) m/e 228 (31), 193 (31), 178 (39), 166 (24), 165 (100), 164 (30), 163 (31), 152 (20), 139 (11); HRMS El m/e calcd for $\mathrm{C}_{21} \mathrm{H}_{20}$ 272.1565, found 271.1443.

1-(Cyclohexa-1,3-dien-5-yl)-2-phenylethynylbenzene (2a). The crude mixture obtained from oxidation (CAN in acetone) of the corresponding iron complex ($0.80 \mathrm{~g}, 2.00 \mathrm{mmol}$) was purified by flash-column chromatography (silica gel, hexanes) to give $\mathbf{2 a}(0.41 \mathrm{~g}, 8.22 \mathrm{mmol}, 75 \%$) as a colorless liquid: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3294,3051,2868,2820,2154,2037,1715$, $1650,1558,1247,1224,1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~m}, 9 \mathrm{H}), 5.94(\mathrm{~m}, 4 \mathrm{H}), 4.37(\mathrm{tt}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H})$, $2.51(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.00,132.33$, $131.45,129.48,128.56,128.32,128.22,127.51,126.19,125.49$, $124.75,123.85,123.41,122.08,93.60,87.92,77.62,76.99$, 76.35, 37.52, 30.29.

1-(Cyclohexa-1,3-dien-5-yl)-2-(2-(trimethylsilyl)ethynyl)benzene (2b). The crude mixture obtained from oxidation (CAN in acetone) of the corresponding iron complex ($3.8 \mathrm{~g}, 10.9$ mmol) was purified by flash-column chromatography (silica gel, hexanes) to give $1 \mathrm{la}(1.71 \mathrm{~g}, 8.22 \mathrm{mmol}, 75 \%$) as a col orless liquid: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3294,3051,2961,2356,2153,2037,1558$, 1247, 1224, $1092 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32$ (m, $4 \mathrm{H}), 6.00(\mathrm{~m}, 4 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H})$, $1.54(\mathrm{~m}, 1 \mathrm{H}), 0.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.46$, 132.55, 129.33, 128.75, 127.37, 126.04, 125.45, 124.82, 123.84, 122.02, 103.67, 98.65, 37.26, 30.09, -0.18; MS (70 eV) m/e252 $\left(M^{+}, 10\right), 237(9), 178$ (100), 165 (13), 88 (19), 73 (44), 61 (53); HRMS EI m/e calcd for $\mathrm{C}_{17} \mathrm{H}_{20}$ Si 252.1334, found 252.1342.

4-(Cyclohepta-1,3-dien-5-yl)-1-phenylbutyne (16). The crude mixture obtained from oxidation (CAN in acetone) of the corresponding iron complex ($1.6 \mathrm{~g}, 4.4 \mathrm{mmol}$) was purified by flash-col umn chromatography (silica gel, hexanes) to give 16 ($0.76 \mathrm{~g}, 3.42 \mathrm{mmol}, 77 \%$) as a colorless liquid: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3521, 3047, 2987, 2396, 2305, 1598, 1518, 1490, 1275, 1263, $1069 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.25$ $(\mathrm{m}, 3 \mathrm{H}), 5.77(\mathrm{~m}, 4 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~m}$, $2 \mathrm{H}), 1.80(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.31$, 134.21, 131.59, 128.24, 127.58, 124.84, 124.41, 123.99, 89.93, 80.85, 39.98, 34.31, 30.09, 28.92, 16.93.
($1 S^{*}, 7 R^{*}, 11 R^{*}$)-2-Oxo-3-phenyltricyclo[5.3.1.0 ${ }^{4,11}$]undeca-3,9-diene (3). The crude mixture obtained from the intramolecular PKR reaction of $\mathbf{1 a}(0.22 \mathrm{~g}, 1.0 \mathrm{mmol})$ was purified by flash-column chromatography (silica gel, gradient elution $3-30 \%$ ethyl acetate in hexanes) to give $\mathbf{3}(0.22 \mathrm{~g}, 0.93 \mathrm{mmol}$, 93%) as a white solid: $\mathrm{mp} 136-137^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3623,3461$, 3059, 2944, 2837, 2360, 2340, 1695, 1276, $1018 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 1$ H), $5.77(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{t}, \mathrm{J}=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.88$ (dd, J = 19.2, 11.2 Hz, 1 H$), 2.62(\mathrm{~m}, 1 \mathrm{H}), 2.21$ $(\mathrm{m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{dt}, \mathrm{J}=16.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75$ (m, 1 H), $1.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.76$, 182.01, 133.96, 131.62, 128.05, 128.03, 127.49, 127.48, 123.01, 48.14, 48.07, 31.21, 31.06, 25.73, 25.11; MS (70 eV) m/e 236 $\left(M^{+}, 100\right), 207(24), 179(27), 165(25), 117(55), 115(53), 105$ (70), 91 (57), 77 (46), 57 (27); HRMS EI m/e calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}$ $\left(\mathrm{M}^{+}\right)$236.1201, found 236.1201. Anal. Cal cd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}$, 86.40; H, 6.82. Found: C, 86.13; H, 6.74. Crystals suitable for X-ray diffraction were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes.
($1 \mathbf{S}^{*}, \mathbf{7 R}^{*}, 11 \mathbf{R}^{*}$)-2-Oxo-3-p-tolyltricyclo[5.3.1.0 ${ }^{4,11}$]undeca-3,9-diene (5). The crude mixture obtained from the intramolecular PKR reaction of $\mathbf{1 b}(0.22 \mathrm{~g}, 1.0 \mathrm{mmol})$ was purified by flash-column chromatography (silica gel, gradient elution $3-30 \%$ ethyl acetate in hexanes) to give 5 ($0.14 \mathrm{~g}, 0.57 \mathrm{mmol}$, $57 \%)$ as a white solid: $\mathrm{mp} 103-105{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3674,3624$, 3032, 2943, 2881, 2360, 2340, 1733, 1699, 1513, 1345, 1018 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, \mathrm{~J}=8.15 \mathrm{~Hz}, 2 \mathrm{H})$, $7.20(\mathrm{~d}, \mathrm{~J}=8.00 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{t}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, \mathrm{J}=8.25$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 2.23$ $(\mathrm{m}, 1 \mathrm{H}), 1.99(\mathrm{dt}, \mathrm{J}=16.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.37$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 206.20, 180.25, 136.54, 133.15, 127.96, 127.89, 127.12, 126.61, 122.24, 47.30, 47.20, $30.41,30.29,24.88,24.29,20.27$; MS (70 eV) m/e250 (M+, 100), 207 (17), 165 (15), 131 (33), 129 (26), 119 (26), 115 (24), 91 (31), 77 (18); HRMS EI m/e calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O} 250.1358$, found 250.1358. Crystals suitable for X-ray diffraction were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes.
(1R*,7R*,11S*)-1-(Dimethylphenylsilyl)-2-oxo-3-phenyltricyclo[5.3.1.0 ${ }^{4,11}$]undeca-3,9-diene (6). The crude mixture obtained from the intramolecular PKR reaction of 1c ($0.437 \mathrm{~g}, 1.3 \mathrm{mmol}$) was purified by flash-col umn chromatography (silica gel, gradient elution $5-30 \%$ ethyl acetate in hexanes) to give $6(0.373 \mathrm{~g}, 1.00 \mathrm{mmol}, 77 \%)$ as a white solid and $\mathbf{3}$ (trace). Compound 6: mp 95-96 ${ }^{\circ} \mathrm{C}$; IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 3624, 2927, 2853, 2041, 1967, 1699, 1674, $1465 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{~m}, 5 \mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H})$,
$5.80(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{dd}, \mathrm{J}=6.8,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, \mathrm{J}=19.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.17$ (m, 1 H), $1.91(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.74$ (ddd, J $=13.1,8.5$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~m}, 1 \mathrm{H}), 0.46(\mathrm{~d}, \mathrm{~J}=9.6,6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 208.50, 181.24, 136.22, 134.46, 134.05, $132.14,129.27,128.25,128.15,127.63,127.50,126.26,125.44$, 51.47, 50.67, 31.95, 31.62, 25.54, 25.31, -4.94, -5.51; MS (70 eV) m/e 370 ($\mathrm{M}^{+}, 100$), 366 (19), 342 (27), 293 (14), 291 (20), 277 (13), 268 (11), 264 (19), 135 (41); HRMS (EI) m/ecalcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{OSi} 370.1753$, found 370.1754 .
(15*,7R*,11R*)-3-(Trimethylsilyl)-2-oxotricyclo[5.3.1.04,11]-undeca-3,9-diene (7a). The crude mixture obtained from the intramolecular PKR reaction of $\mathbf{1 d}(0.36 \mathrm{~g}, 1.76 \mathrm{mmol})$ was purified by flash-column chromatography (silica gel, gradient elution 3-30\% ethyl acetate in hexanes) to give 7a (0.21 g , $0.91 \mathrm{mmol}, 52 \%$) and 7b ($0.05 \mathrm{~g}, 0.22 \mathrm{mmol}, 13 \%$), both as colorless liquids. Compoumd 7a: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3676,3630,3354$, 2925, 2356, 2083, 1684, 1653, 1558, 1457, 1420, 1271, 1221 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.70(\mathrm{~m}, 1 \mathrm{H}), 5.68(\mathrm{~m}, 1$ H), 3.14 ($\mathrm{m}, 1 \mathrm{H}$), 3.12 (m, 1 H), 2.69 (dd, J $=19.0,18.8 \mathrm{~Hz}, 1$ $\mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{dt}, \mathrm{J}=$ 16.8, $6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.79 (m, 1 H$), 1.39$ (m, 1 H), 0.18 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 212.91,196.12,135.45,126.68$, 123.64, 51.76, 48.70, 31.37, 31.27, 25.92, 25.14, -1.29; MS (70 eV) m/e 232 (M+, 100), 217 (56), 189 (20), 143 (12), 130 (13), 118 (15), 91 (21), 75 (25), 73 (66), 59 (13); HRMS EI m/ecal cd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{OSi} 232.1283$, found 232.1288.
(1S*,7R*,11R*)-2-Oxotricyclo[5.3.1.0 ${ }^{4,11}$]undeca-3,9-diene (7b): IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3676,3381,3057,3053,2924,2038$, 1696, 1653, $1160 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.84$ (s, $1 \mathrm{H}), 5.72(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~m}, 1 \mathrm{H})$, $2.70(\mathrm{dd}, \mathrm{J}=19.1,19.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H})$, $2.21(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{dt}, \mathrm{J}=17.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H})$, $1.44(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.69,188.73$, $127.45,124.64,123.33,50.19,47.82,31.60,30.38,25.27,24.73$; MS (70 eV) m/e $160\left(\mathrm{M}^{+}, 100\right), 159$ (25), 132 (19), 131 (34), 117 (52), 115 (17), 104 (27), 92 (14), 97 (49), 77 (19); HRMS EI m / e calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}$ 160.0888, found 160.1143 .
(13*,8R*,12R*)-3-(Trimethylsilyl)-2-oxotricyclo[6.3.1.0 $\left.{ }^{4,12}\right]$ -dodeca-3,9-diene (8a). The crude mixture obtained from the intramolecular PKR reaction of $\mathbf{1 e}(0.44 \mathrm{~g}, 2.0 \mathrm{mmol})$ was purified by flash-column chromatography (silica gel, gradient elution 3-30\% ethyl acetate in hexanes) to give 8a (0.31 g , $1.26 \mathrm{mmol}, 63 \%$) and $\mathbf{8 b}(0.07 \mathrm{~g}, 0.4 \mathrm{mmol}, 20 \%)$, both as col orless liquids. Compound 8a: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3676,3355,3058$, 2370, 1679, 1558, 1437, 1317, 1235, $1125 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.68(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H})$, 3.05 (m, 1 H), 3.00 (m, 1 H), 2.25 (m, 1 H), 2.20 (m, 1 H), 1.94 (m, 1 H), $1.90(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}$, $1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 0.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.71,188.32,138.38,128.09,123.98,48.33,46.49,33.82$, 31.05, 29.40, 25.01, 21.75, -0.36; MS (70 eV) m/e246 (M+, 85), 231 (100), 230 (32), 218 (26), 203 (30), 157 (16), 129 (23), 128 (17), 115 (18), 91 (28), 75 (40), 73 (85); HRMS EI m/e calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{OSi}$ 246.1440, found 246.1446.
(1S*,8R*,12R*)-2-Oxotricyclo[6.3.1.04,12] dodeca-3,10-diene (8b): IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3676,3382,3032,2212,1690,1623$, 1559, 1319, 1182, $1093 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $5.90(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 3.06$ $(\mathrm{m}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~m}$, $1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H})$, $1.72(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.25,181.52$, 128.61, 128.22, 123.52, 48.00, 44.69, 33.39, 30.42, 29.21, 24.82, 21.23; MS (70 eV) m/e 174 (${ }^{+}, 100$), 173 (43), 146 (17), 145 (20), 131 (46), 117 (32), 115 (15), 105 (12), 91 (31), 77 (16), 65 (8); HRMS EI m/ecalcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}$ 174.1045, found 174.1047.
(1R*,8R*,12S*)-1-(Dimethylphenylsilyl)-2-oxo-3-phenyltricyclo[6.3.1.0 ${ }^{4,12}$]dodeca-3,10-diene (9a). The crude mixture obtained from the intramolecular PKR reaction of $\mathbf{1 f}$ (0.61 $\mathrm{g}, 1.70 \mathrm{mmol}$) was purified by flash-column chromatography (silica gel, gradient elution 3-30\% ethyl acetate in hexanes)
to give 9 a ($0.32 \mathrm{~g}, 0.83 \mathrm{mmol}, 48 \%$) and $9 \mathrm{~b}(0.10 \mathrm{~g}, 0.40 \mathrm{mmol}$, 23\%), both as colorless liquids. Compound 9a: mp 111-112 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3627,2952,2858,2359,1605,1467,1378 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ (m, 6 H), 7.16 (d, J $=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $5.80(\mathrm{~m}, 1 \mathrm{H}), 5.78$ (m, 1 H), $2.87(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{td}, \mathrm{J}=13.8,5.7 \mathrm{~Hz}, 1$ H), 1.93 (m, 1 H), $1.90(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{tt}, \mathrm{J}=13.4,3.7 \mathrm{~Hz}, 1$ H), $1.69(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{tt}, \mathrm{J}=$ $13.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.45(\mathrm{~d}, \mathrm{~J}=15.9,6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 206.19, 172.25, 138.72, 135.68, 134.32, 131.76, 129.36, 129.21, 128.05, 127.56, 127.41, 127.38, 125.64, 49.25, 46.80, 34.18, 29.75, 28.46, 25.08, 21.09, -5.44, -6.15; MS (70 eV) m/e 384 ($\mathrm{M}^{+}, 39$), 313 (21), 165 (19), 136 (15), 135 (100), 128 (17), 115 (23), 97 (29), 95 (28), 91 (31); HRMS (EI) m/e calcd for $\mathrm{C}_{26} \mathrm{H}_{28}$ OSi 384.1909, found 384.1907.
($1 S^{*}, 8 R^{*}, 12 R^{*}$)-2-Oxo-3-phenyltricyclo[6.3.1.04,12] dodeca-3,10-diene (9b): mp $121-122{ }^{\circ} \mathrm{C}$; IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 3623, 2944, $2359,1733,1692,1605,1339 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~m}, 3 \mathrm{H}), 5.86(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{~m}, 1 \mathrm{H})$, $3.27(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dt}, \mathrm{J}=14.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H})$, $1.80(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.69,174.18,138.47,131.48$, 129.19, 128.69, 128.17, 127.55, 123.51, 47.47, 43.33, 33.40, 29.46, 28.60, 24.93, 21.19; MS (70 eV) m/e 250 (${ }^{+}$+ 100), 249 (22), 207 (25), 178 (35), 165 (36), 131 (25), 128 (23), 115 (46), 91 (40), 77 (20); HRMS (EI) m/e calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O} 250.1358$, found 250.1355. Crystals suitable for X-ray diffraction were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes.
(15*,8S*)-2-Oxo-3-phenyltricyclo[6.4.0.0 ${ }^{4,11}$]dodeca-3,-10-diene (10). The crude mixture obtained from the intramolecular PKR reaction of $\mathbf{1 g}(0.22 \mathrm{~g}, 1.00 \mathrm{mmol})$ was purified by flash-column chromatography (silica gel, gradient elution $3-30 \%$ ethyl acetate in hexanes) to give $\mathbf{9 b}$ ($0.14 \mathrm{~g}, 0.57 \mathrm{mmol}$, 57%) and 10 ($0.085 \mathrm{~g}, 0.34 \mathrm{mmol}, 34 \%$), both as colorless liquids. Compound 10: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3623,3447,3057,2944$, 2837, 2360, 2340, 1606, 1339, $1075 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 1 \mathrm{H}), 6.14(\mathrm{~m}$, $1 \mathrm{H}), 5.96(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 1 \mathrm{H})$, 2.28 (m, 1 H), 2.11 (m, 2 H), 2.09 (m, 1 H), 2.07 (m, 1 H), 1.88 $(\mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.10,186.69,132.10,131.79,128.63$, 128.29, 128.22, 127.66, 124.17, 57.13, 51.35, 33.06, 31.74, 26.32, 23.69, 22.77; MS (70 eV) m/e 250 (${ }^{+}$, 41), 195 (18), 194 (100), 193 (22), 179 (20), 178 (21), 129 (19), 128 (21), 115 (26), 91 (17); HRMS EI m/e calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O} 250.1358$, found 250.1360.
(1S*,8R*,12R*)-2-Oxo-3-p-tolyltricyclo[6.3.1.0 ${ }^{4,12}$]dodeca-3,10-diene (11a). The crude mixture obtained from the intramolecular PKR reaction of $\mathbf{1 h}(0.47 \mathrm{~g}, 2.0 \mathrm{mmol})$ was purified by flash-column chromatography (silica gel, gradient elution $3-30 \%$ ethyl acetate in hexanes) to give 11a (0.16 g , $0.58 \mathrm{mmol}, 29 \%$) as a white solid and $\mathbf{1 1 b}(0.18 \mathrm{~g}, 0.55 \mathrm{mmol}$, 28%) as a colorless oil. Compound 11a: mp 103-105 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3676, 3368, 3032, 3057, 2928, 2057, 2039, 1733, 1690, 1654, 1636, 1374, 1244, 1132, $1046 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.9(\mathrm{dt}, \mathrm{J}=8.05,10.55 \mathrm{~Hz}, 4 \mathrm{H}), 5.85(\mathrm{~m}, 1 \mathrm{H}), 5.75$ $(\mathrm{m}, 1 \mathrm{H}), 3.25(\mathrm{dd}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.04(\mathrm{tt}, \mathrm{J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}$, $1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H})$, $1.76(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.91, 173.74, 138.30, 137.28, 129.02, 128.85, 128.62, 128.42, 123.48, 47.40, 43.23, 33.34, 29.41, 28.55, 24.87, 21.19, 21.12; MS (70 eV) m/e 264 (${ }^{+}$, 100), 235 (11), 221 (10), 210 (6), 179 (7), 178 (6), 165 (6), 129 (5); HRMS EI m/e calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}$ 264.1514, found 264.1506. Crystals suitable for X-ray diffraction were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes.
(1S*,8S*)-2-Oxo-3-p-tolyltricyclo[6.4.0.0 $\left.{ }^{4,11}\right]$ dodeca-3,10diene (11b): IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3677, 3630, 3382, 2925, 2357, 2036, 1968, 1734, 1559, 1457, 1374, $1092 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$,
6.14 (m, 1 H), 5.94 (m, 1 H), 2.72 (m, 1 H), 2.72 (m, 1 H), 2.66 (s, 1 H), 2.34 ($\mathrm{s}, 3 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 1$ H), $2.03(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{tt}, \mathrm{J}=6.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~m}, 1 \mathrm{H})$, 1.02 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 206.94, 185.57, 137.30, 131.81, 128.85, 128.80, 128.43, 128.06, 124.18, 56.99, 51.13, 32.96, 31.64, 26.21, 23.61, 22.68, 21.13; MS (70 eV) m/e 264 (M+ ${ }^{+} 65$), 208 (100), 193.1 (28), 179.1 (22), 136.0 (29), 119.0 (67), 115.0 (22), 91.0 (49), 70.0 (24); HRMS EI m/e calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O} 264.1514$, found 264.1501 .
(1S*,8R*,12R*)-2-0xo-3-naphthyltricyclo[6.3.1.0 ${ }^{4,12}$]do-deca-3,10-diene (12a). The crude mixture obtained from intramolecular PKR reaction of $\mathbf{1 i}(0.27 \mathrm{~g}, 1.0 \mathrm{mmol})$ was purified by flash-column chromatography (silica gel, gradient elution 3-30\% ethyl acetate in hexanes) to give 12a (0.07 g , $0.23 \mathrm{mmol}, 23 \%$) and 12b ($0.14 \mathrm{~g}, 0.47 \mathrm{mmol}, 47 \%$), both as colorless liquids. Compound 12a: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3368,3062$, 2928, 2365, 1733, 1374, 1245, $1046 \mathrm{~cm}^{-1}$; 1H NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 6.03(\mathrm{~m}$, 1 H), $5.85(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H})$, $2.34(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.94$ (m, 1 H) $, 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 204.84,176.34,138.82,133.71,131.90,129.69,128.86$, 128.64, 128.40, 127.43, 126.12, 125.80, 125.27, 125.06, 123.88, 47.93, 43.86, 33.46, 29.71, 28.74, 25.23, 21.01; MS (70 eV) m/e 300 (M+ 100), 229 (20), 215 (20), 202 (17), 167 (15), 165 (36), 152 (19), 91 (19); HRMS EI m/e calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O} 300.1514$, found 300.1522 .
(15*,8S*)-2-Oxo-3-naphthyltricyclo[6.4.0.0 ${ }^{4,11}$]dodeca-3,10-diene (12b): IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 3624, 3054, 2944, 2834, 2359, 2342, 1700, 1606, 1338, $1075 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H})$, 6.19 (m, 1 H), 6.00 (m, 1 H), 2.85 (m, 1 H), 2.63 (m, 1 H), 2.39 $(\mathrm{m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}$, 1 H), 1.98 (m, 1 H$), 1.47(\mathrm{~m}, 1 \mathrm{H}), 1.26$ (m, 1 H$)$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl ${ }^{\text {}}$) $\delta 206.85,189.22,135.06,133.66,131.36$, 129.61, 128.68, 128.41, 128.27, 127.41, 125.76, 125.58, 125.17, 124.94, 124.27, 56.87, 51.43, 33.66, 32.28, 25.67, 23.12, 22.75; MS (70 eV) m/e 300.2 (${ }^{+}$, 100), 244.1 (93), 243.1 (39), 229.1 (35), 228.1 (25), 215.0 (43), 202.0 (26), 165.0 (43), 91.0 (25); HRMS EI m/e calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O} 300.1514$, found 300.1518 .

1-Phenyl-2a,5,5a,9c-tetrahydrocyclopenta[jk]fluoren-2-one (13). The crude mixture obtained from the intramolecular PKR reaction of $\mathbf{2 a}(0.26 \mathrm{~g}, 1.0 \mathrm{mmol})$ was purified by flash-column chromatography (silica gel, gradient elution $3-30 \%$ ethyl acetate in hexanes) to give $\mathbf{1 3}$ ($0.27 \mathrm{~g}, 0.95 \mathrm{mmol}$, $95 \%)$ as a white solid: $\mathrm{mp} 139-140{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3453,3384$, 3062, 2305, 1701, 1692, 1419, 1270, $1017 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 7 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H})$, $5.98(\mathrm{~m}, 1 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~m}$, $1 \mathrm{H}), 3.25(\mathrm{q}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dt}, \mathrm{J}=17.5,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.49(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.73,175.01$, $155.45,134.82,134.56,131.74,131.40,129.04,128.12,128.04$,
127.04, 126.21, 125.02, 124.95, 123.08, 48.35, 46.92, 37.24, 29.65; MS (70 eV) m/e 284 (M+, 100), 256 (28), 255 (41), 252 (29), 241 (36), 239 (42), 178 (45), 167 (27), 165 (46); HRMS EI m / e calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}$ 284.1201, found 284.1197. Crystals suitable for X-ray diffraction were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes.
1-(Trimethylsilyl)-2a,5,5a,9c-tetrahydrocyclopenta[jk]-fluoren-2-one (14). The crude mixture obtained from the intramolecular PKR reaction of $\mathbf{2 b}(0.25 \mathrm{~g}, 1.0 \mathrm{mmol})$ was purified by flash-col umn chromatography (silica gel, gradient elution 3-30\% ethyl acetate in hexanes) to give 14 (0.094 g , $0.35 \mathrm{mmol}, 35 \%$) as a colorless oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3533,3384$, 3059, 2302, 1702, 1681, 1418, 1162, $1021 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz} \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 1 \mathrm{H}), 5.89$ (m, 1 H), 5.76 (m, 1 H), 3.54 (t, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H})$, 3.16 (dt, J $=9.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dt}, \mathrm{J}=17.2,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.48(\mathrm{~m}, 1 \mathrm{H}), 0.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 211.87, 188.44, 155.40, 136.09, 135.78, 131.13, 126.95, 126.21, $125.79,125.07,123.48,52.61,48.05,37.23,29.42,-0.38$; MS $(70 \mathrm{eV}) \mathrm{m} / \mathrm{e} 280.0\left(\mathrm{M}^{+}, 100\right), 265$ (37), 191 (24), 189 (17), 179 (27), 178 (51), 167 (40), 166 (83); HRMS EI m/ecal cd for $\mathrm{C}_{18} \mathrm{H}_{20^{-}}$ OSi 280.1283, found 280.1288 .
(1S*, $\mathbf{7 R}^{*}, 12 \mathrm{R}^{*}$)-2-Oxo-3-phenyltricyclo[5.4.1.0 ${ }^{4,12}$]dodeca-3,10-diene (17). The crude mixture obtained from the intramolecular PKR reaction of $16(0.22 \mathrm{~g}, 1.0 \mathrm{mmol})$ was purified by flash-column chromatography (silica gel, gradient elution 3-30\% ethyl acetate in hexanes) to give 17 (0.034 g , $0.14 \mathrm{mmol}, 14 \%$) as a colorless oil: IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 3520, 3393, 2954, 2309, 1732, 1681, 1421, 1258, $1022 \mathrm{~cm}^{-1}$ $^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, 2 H), 7.31 (dd, J $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{~m}, 1 \mathrm{H})$, $3.43(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, \mathrm{J}$ $=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{tt}, \mathrm{J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.34$ (m, 1 H), $2.20(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.38,183.65,133.03,131.92,129.83$, 128.21, 128.12, 127.59, 124.73, 53.23, 51.28, 41.14, 34.89, 30.83, 30.58, 25.95; MS (70 eV) m/e 250 ($\mathrm{M}^{+}, 4$), 220 (19), 178 (9), 150 (11), 149 (100), 147 (4), 135 (2), 108 (9), 107 (97), 77 (4); HRMS EI m/ecalcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}$ 250.1358, found 250.1363.

Acknowledgment. This work was supported by grants from National Taiwan Normal University (No. ORD 92-2) and the National Science Council (No. NSC 92-2113-M-003-009).

Supporting Information Available: Tables of atomic coordinates, bond lengths, bond angles and ani sotropic thermal parameters for compounds $\mathbf{3 , 5 , 9 b} \mathbf{1 1 a}$, and $\mathbf{1 3}$. This material is available free of charge via the Internet at http://pubs.acs.org.

OM030634P

[^0]: (1) (a) Hanson, B. E. Comments I norg. Chem. 2002, 23, 289. (b) Geis O.; Schmalz, H.-G. Angew. Chem., Int. Ed. 1998, 37, 7, 911. (c) Brummond, K. M.; Kent, J L. Tetrahedron 2000, 56, 3263. (d) Chung, Y. K. Coord. Chem. Rev. 1999, 188, 297. (e) Jeong, N. In Transition Metals in Organic Synthesis; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, Germany, 1998; Vol. 1, p 560.
 (2) (a) Kowalczyk, B. A.; Shmith, T. C.; Dauben, W. G.J . Org. Chem. 1998, 63, 1379. (b) Castro, J.; Moyano, A.; Pericas, M. A,; Riera, A. J . Org. Chem. 1998, 63, 3346. (c) J ami son, T. F.; Shambayati, S.; Crowe, W. E.; Schrieber, S. L. J . Am. Chem. Soc. 1997, 119, 4353.
 (3) Son, S. U.; Lee, S. I.; Chung, Y. K.; Kim, S.-W.; Hyeon, T. Org. Lett. 2002, 4, 277. (b) Sturla, S. J.; Buchwald, S. L. J . Org. Chem. 2002, 67, 3398. (c) J eong, N.; Hwang, S. H. Angew. Chem., Int. Ed. 2000, 39, 636. (d) Pagenkopf, B. L.; Belanger, D. B.; O'Mahoney, D. J. R.; Livinghouse, T. Synthesis 2000, 1009. (e) Comely, A. C.; Gibson, S. E.; Hales, N. J. Chem. Commun. 2000, 305.
 (4) (a) Shibata, T., Toshida, N.; Takagi, K. J. Org. Chem. 2002, 67, 7446. (b) Morimoto,' T.; Fuji,' K.;' Tsutsumi, K.; Kakiuchi, K. J. Am. Chem. Soc. 2002, 124, 3806. (c) J eong, N.; Sung, B. K.; Kim, J. S.; Park, S. B.; Seo, S. D.; Shin, J. Y.; In, K. Y.; Choi, Y. K. Pure Appl. Chem. 2002, 74, 85. (d) K obayashi, T.; K oga, Y.; Narasaka, K. J. Organomet. Chem. 2001, 634, 73. (e) Evans, P. A.; Robinson, J. E. J . Am. Chem. Soc. 2001, 123, 4609.
 (5) (a) Sturla, S. J.; Buchwald, S. L. Organometallics 2002, 21, 739. (b) Kondo, T.; Suzuki, N.; Okada, T.; Mitsudo, T. J . Am. Chem. Soc. 1997, 119, 6187. (c) Moromoto, T.; Chatani, N.; Fukumoto, Y.; Murai, S. J. Org. Chem. 1997, 62, 3762.
 (6) Shibata, T.; Tagaki, K. J. Am. Chem. Soc. 2000, 122, 9852.
 (7) (a) Brummond, K. M. An Allenic [2+2+1] Cycloaddition. In Advances in Cycloaddition Chemistry; Harmata, M., Ed.; J AI Press: Stamford, CT, 1999; Vol. 6, pp 211-237. (b) Brummond, K. M.; Wan, H.; K ent, J. L. J. Org. Chem. 1998, 63, 6535. (c) Brummond, K. M.; Wan, H. Tetrahedron Lett. 1998, 39, 931. (d) Kent, J. L.; Wan, H.; Brummond, K. M. Tetrahedron Lett. 1995, 36, 2407.

[^1]: (8) (a) Brummond, K. M.; Lu, J . J . Am. Chem. Soc. 1999, 121, 5087. (b) Mukai, C.; Nomura, I.; Yamanishi, K.; Hanaoka, M. Org. Lett. 2002, 4, 1755. (c) (a) Brummond, K. M.; Chen, H. Fisher, K. D.; Kerekes, A. D.; Rickards, B.; Sill, P. C.; Geib, S. J. Org. Lett. 2002, 4, 1931.
 (9) We finished this work in May 2003. However, the acydlic 1,3dienyl Pauson-Khand reaction has since been reported: Wender, P . A.; Deschamps, N. M.; Gamber, G. G. Angew. Chem., Int. Ed. 2003, 42, 1853.
 (10) (a) Yeh, M. C. P.; Sheu, B. A.; Fu, H. W.; Tau, S. I.; Chuang, L. W. J . Am. Chem. Soc. 1993, 115, 5941. (b) Yeh, M. C. P.; Sun, M. L.; Lin, S. K. Tetrahedron Lett. 1991, 32, 113.
 (11) Blankenfeldt, W.; Liao, J. W.; Lo, L. C.; Yeh, M. C. P. Tetrahedron Lett. 1996, 37, 7361.

[^2]: (12) The structure of this compound was further proved by X-ray diffraction analysis.

[^3]: (14) Still, W. C.; Kahn, M.; Mitra, A. J . Org. Chem. 1978, 43, 2923

