A Facile Synthesis of Bridged-tricyclic Skeletons via Intramolecular Diels-Alder Reaction of Cyclic 1,3-Dienes Containing an α , β -Unsaturated Ester

Ming-Chang P. Yeh* (葉名倉), Wen-Cheng Tsao (曹文正) and Ching-Jing Liu (劉勤經) Department of Chemistry, National Taiwan Normal University, Taipei 117, Taiwan, R.O.C.

Intramolecular Diels-Alder reaction (IMDA) precursors are easily available starting from addition of ester functionalized zinc-copper reagents to cyclohexadienyl- and cycloheptadienylirontricarbonyl cation salts. The resulting cyclic 1,3-dienes containing an α , β -unsaturated ester functionality underwent smoothly IMDA reaction to afford bridged tricyclic compounds. Bridged heterotricyclic skeletons were also available via IMDA reaction of cyclic 1,3-dienes bearing an imine or aldehyde functionality.

Keywords: Cyclic 1,3-diene; Intramolecular Diels-Alder reaction; Bridged-tricyclic compound.

INTRODUCTION

Intramolecular Diels-Alder (IMDA) reaction has been widely utilized as one of the most powerful tools to construct fairly complex carbocycles in organic synthesis.¹ The 4+2 reaction creates two new carbon-carbon bonds and generates bicyclic compounds from a substrate having two separate functional groups, diene and dienophile. Two types of IMDA reaction are of great interest. When the diene and dienophile are joined at the C-1 position of the diene, the reaction leads to fused bicyclic compounds (type 1 IMDA),² whereas the type 2 variant of IMDA provides an access to bridged bicyclic molecules in one step from the substrates with a dienophile at the C-2 position of the diene.³ These two types of IMDA reactions can further be extended to the synthesis of tricyclic skeletons by employing a system wherein a dienophile is directly incorporated into a cyclic diene moiety. Surprisingly, reports on the IMDA reaction of conjugated cyclic dienes with a dienophile at the C-5 position of the rings are rare.^{4,5} Herein we report that cyclohexa- and cyclohepta-1,3diene-tethered α , β -unsaturated esters undergo IMDA reaction in refluxing *n*-butyl ether to give a variety of bridged tricyclic skeletons. Moreover, IMDA reaction of cyclic 1,3dienes with an imine or aldehyde moiety furnished bridged heterotricyclic compounds.

RESULTS AND DISCUSSION

Cyclohexa- and cyclohepta-1,3-dienes containing an α,β -unsaturated ester can be synthesized using the method developed in these laboratories. As shown in Scheme I, IMDA reaction precursors, 2a-b, were prepared starting from addition of ester functionalized zinc-copper reagents RCu(CN)ZnI to $(\eta^5$ -cyclohexadienyl)tricarbonyliron cation salt in THF according to literature procedures.⁶ Decomplexation of the resulting complexes with cerium ammonium nitrate (CAN) in acetone followed by reduction with diisobutylaluminum hydride (DIBAL) at -78 °C afforded cyclohexa-1,3-dienals 1ab. Treatment of the dienals with the Horner-Wadsworth-Emmons reagent⁷ (Ph₃PCHCO₂Et) in CH₂Cl₂ at 30 °C for 4 h furnished **2a-b**, with an *E* stereochemistry at the double bond. Cycloheptadiene analogs 2c-d were synthesized using a similar approach starting from cycloheptadienylirontricarbonyl cation salt and ester functionalized zinc-copper reagents (Scheme I).

Our IMDA reaction study began with **2a**. Substrate **2a** (0.33 g, 1.60 mmol) was added to a round-bottom flask containing 100 mL of anhydrous *n*-butyl ether under nitrogen. The dilute solution was stirred at 150 °C for 2 h and led to a 60% yield of tricyclo[4.3. $1.0^{3.7}$]dec-8-ene-2-carboxylic acid ethyl ester (**3**) as the only stereoisomer isolated after chro-

^{*} Corresponding author. E-mail: cheyeh@scc.ntnu.edu.tw

Scheme I

matographic purification (eq 1). Of particular note is the use of a readily available C-5 functionalized cyclohexa-1,3-diene derivative **2a** to control the relative stereochemistry of the five contiguous asymmetric centers. NMR studies provided the initial evidence for support of the structural assignments. The resonances of a multiplet at δ 6.20 for **3** were due to vinyl protons at C-8 and C-9. A quartet, centered at δ 4.08 was assigned to the methylene protons at C-12; a multiplet, centered at δ 2.86 was assigned to the methine proton at C-1 and a multiplet, centered at δ 2.45 was assigned to the methine proton at C-7. The C-13 NMR spectrum exhibited a signal at δ 174.7 assigned to C-11 (carbonyl); two signals at δ 132.5 and 131.4 assigned to two vinyl carbons (C-8 and C-9); and a signal at δ 60.2 assigned to C-12. The relative configuration of five contiguous stereogenic centers as depicted is fixed by syn-endo addition of the dienophile to the diene. This stereochemistry is generally governed by the steric and/or orbital requirements, as is often the case for the IMDA reaction.⁸ The substrate with an additional methylene group at the tether, **2b**, also underwent IMDA reaction to afford tricyclo[$5.3.1.0^{3.8}$]undec-9-ene-2-carboxylic acid ethyl ester (**4**) as the only stereomer in 47% isolated yield (eq 2). However, the IMDA reaction of seven-membered ring substrate, **2c**, was more sluggish and led to a 64% yield of tricyclo[$4.3.2,0^{3.7}$]undec-8-ene-2-carboxylic acid ethyl ester (**5**) after refluxing **2c** in *n*-butyl ether for 6 days (eq 3). Attempted IMDA reaction of **2d** failed to provide the desired product **6** (eq 4).

In order to further utilize the above method for synthesis of bridged heterotricyclic skeletons we set out to exam the IMDA reaction of the benzylimine derivative of cyclodienal

1a by slow addition of **1a** over 10 h to a 1.0 M solution of benzylamine hydrochloride (excess) in water/ethanol (1:1) at *ca*. 70 °C. The reaction was further stirred at 70 °C for 24 h to produce 2-benzyl-2-azatricyclo[$4.3.1.0^{3,7}$]dec-8-ene (**7**) in 75% yield. The formation of **7** was derived from IMDA reaction of the initially formed benzylimine with the cyclic 1,3-diene (eq 5). The spectral data for **7** are similar to those of **8** found in the literature.⁵ Moreover, IMDA reaction of the seven-membered ring substrate, **1c**, also provided 2-oxatricyclo[$4.3.2.0^{3,7}$]undec-8-ene (**9**) in 60% yield after refluxing **1c** in THF at 65 °C for 48 h (eq 6).

IMDA reaction of cyclohexa- and cyclohepta-1,3-dienes with an α , β -unsaturated ester moiety proceeded in a ste-

reo-controlled manner to give bridged tricyclic skeletons. This chemistry can be extended to bridged tricyclic amine and ether derivatives by IMDA reaction of cyclic 1,3-dienes with an imine and aldehyde functionality, respectively.

EXPERIMENTAL

All reactions were run under an argon atmosphere in oven-dried glassware unless otherwise indicated. Complexes **2a-d** were synthesized following the literature procedures.⁶ Anhydrous solvents or reaction mixtures were transferred via an oven-dried syringe or cannula. Tetrahydrofuran (THF) was predried by molecular sieves and then by passing through an Al₂O₃ column.⁹ *n*-Butyl ether was distilled from CaH₂ prior to use. Flash column chromatography, following the method of Still, was carried out with E. Merck silica gel (Kieselgel 60, 230-400 mesh) using the indicated solvents.¹⁰ with Bruker-AC 400 (400 MHz) and Varian G-200 (200 MHz) spectrometers. The chemical shifts are reported in parts per million with either tetramethylsilane (0.00 ppm) or CDCl₃ (7.26 ppm) as internal standard. ¹³C NMR spectra were recorded with Bruker-AC 400 (100.4 MHz) spectrometer with CDCl₃ (77.0 ppm) as the internal standard. Infrared (IR) spectra were recorded with a JASCO IR-700 spectrometer. Mass spectra were acquired on a JEOL JMS-D 100 spectrometer at an ionization potential of 70 eV and are reported as mass/charge (*m/e*) with percent relative abundance. High-resolution mass spectra were obtained with an AEI MS-9 double-focusing mass spectrometer and a JEOL JMS-HX 110 spectrometer at the Department of Chemistry, Central Instrument Center, Taichung, Taiwan.

General Procedure I: IMDA Reaction of Cyclic 1,3-Dienes Containing an α , β -Unsaturated Ester Moiety

A solution of 2a (0.33 mg, 1.60 mmol) in 100 mL of dry *n*-butyl ether was refluxed under nitrogen. The reaction was terminated until substrate 2a was no longer detected on ¹H NMR.

Tricyclo[4.3.1.0^{3,7}]dec-8-ene-2-carboxylic acid ethyl ester (3)

The crude mixture from IMDA reaction of **2a** (0.33 mg, 1.60 mmol) was purified via flash column chromatography (silica gel, hexanes/ethyl acetate = 40/1) to give **3** (0.20 g, 0.96 mmol, 60%). ¹H-NMR (CDCl₃, 400 MHz): δ 6.20 (m, 2H), 4.08 (q, *J* = 7.2 Hz, 2H), 2.86 (m, 1H), 2.45 (m, 1H), 2.36 (m, 1H), 2.17 (dd, *J* = 5.3, 2.7 Hz, 1H), 1.88 (m, 2H), 1.46 (m, 3H), 1.24 (t, 7.2 Hz, 3H), 0.98 (m, 1H); ¹³C-NMR (CDCl₃, 100 MHz): δ 174.73, 132.54, 131.43, 60.20, 54.19, 41.93, 39.27, 37.46, 34.17, 32.05, 31.85, 31.36, 14.29; IR (CH₂Cl₂): 3055, 2985, 2685, 2305, 1733, 1423, 1674, 1258 cm⁻¹; MS (20 ev) *m/e*: 206 (M⁺), 160, 133, 104, 91, 79, 77; HRMS (EI) *m/e* calcd for C₁₃H₁₈O₂ 206.1307, found 206.1304.

Tricyclo[5.3.1.0^{3,8}]undec-9-ene-2-carboxylic acid ethyl ester (4)

The crude mixture from IMDA reaction of **2b** (0.37 mg, 1.68 mmol) was purified via flash column chromatography (silica gel, hexanes/ethyl acetate = 40/1) to give **4** (0.17 g, 0.79 mmol, 47%). ¹H-NMR (CDCl₃, 400 MHz): δ 6.37 (t, *J* = 7.1 Hz, 1H), 6.18 (t, *J* = 6.9 Hz, 1H), 4.08 (q, *J* = 7.1 Hz, 2H), 2.89 (d, *J* = 3.1 Hz, 1H), 2.32 (dd, *J* = 4.6, 2.5 Hz, 1H), 2.12 (dt, *J* = 6.4, 2.7 Hz, 1H), 2.05 (m, 1H), 1.68 (m, 2H), 1.56 (m,

2H), 1.43 (m, 5H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 175.50, 136.59, 131.99, 60.13, 47.68, 38.49, 34.60, 32.33, 30.32, 29.53, 29.04, 14.86, 14.24; IR (CH₂Cl₂): 3049, 2986, 2929, 2685, 2410, 2305, 1422, 1264 cm⁻¹; MS (20 ev) *m/e*: 220 (M⁺), 174, 130, 91, 79, 77; HRMS (EI) *m/e* calcd for C₁₄H₂₀O₂ 220.1463, found 220.1459.

Tricyclo[4.3.2.0^{3,7}]undec-8-ene-2-carboxylic acid ethyl ester (5)

The crude mixture from IMDA reaction of **2c** (0.23 mg, 1.05 mmol) was purified via flash column chromatography (silica gel, hexanes/ethyl acetate = 40/1) to give **5** (0.14 g, 0.79 mmol, 64%). ¹H-NMR (CDCl₃, 400 MHz): δ 6.03 (dd, J = 11, 8.5 Hz, 1H), 5.89 (t, J = 9.0 Hz, 1H), 4.03 (q, J = 5.9 Hz, 2H), 2.77 (t, J = 9.3 Hz, 1H), 2.46 (m, 2H), 2.16 (m, 1H), 2.08 (m, 1H), 1.80 (m, 2H), 1.53 (m, 3H), 1.40 (m, 3H), 1.15 (t, J = 5.9 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 176.20, 130.67, 128.40, 60.25, 55.50, 43.75, 42.23, 36.26, 35.53, 33.73, 27.60, 27.29, 25.41, 14.25; IR (CH₂Cl₂): 3055, 2975, 2928, 2358, 1717, 1605, 1558, 1317 cm⁻¹; MS (20 ev) *m/e*: 220 (M⁺), 201.2, 191.2, 174.2, 149, 117.1, 114.1, 105.1, 91.1, 79.1, 77.1; HRMS (EI) *m/e* calcd for C₁₄H₂₀O₂ 220.1463, found 220.1459.

2-Benzyl-2-azatricyclo[4.3.1.0^{3,7}]dec-8-ene (7)

Benzylaminehydrochloride (0.95 g, 7.25 mmol) was added to a 25-mL round-bottom flask containing 3.3 mL of 50% EtOH/H₂O. Dienal 1a (0.2 g, 1.50 mmol) in 3.3 mL of 50% EtOH/H₂O was added slowly to the reaction mixture. The reaction was stirred for 40 h at 70 °C. The reaction was quenched with saturated NaHCO3 solution and was extracted with ethyl acetate (ca. 30 mL). The resultant solution was washed with water, brine and dried with anhydrous MgSO₄. The solution was filtered and concentrated on a rotary evaporator to give the crude mixture. The crude mixture was purified by flash column chromatography (silica gel, hexanes/ ethyl acetate = 40/1) to give 7 (0.25 g, 1.11 mmol, 75%). ¹H-NMR (CDCl₃, 400 MHz): δ 7.36 (d, J = 7.4 Hz, 2H), 7.30 (t, J= 7.4 Hz, 2H), 7.22 (t, J = 7.1 Hz, 1H), 6.37 (m, 2H), 3.68 (d, J = 13.6 Hz, 1H), 3.36 (d, J = 13.4 Hz, 1H), 3.30 (m, 1H), 2.47 (m, 1H), 2.41 (m, 1H), 1.74 (m, 4H), 1.50 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 140.54, 133.95, 129.76, 128.90, 128.03, 126.55, 63.17, 60.83, 50.62, 42.13, 38.59, 32.97, 32.68, 31.44; IR (CH₂Cl₂): 3055, 2985, 2685, 2305, 1733, 1423, 1674, 1258 cm⁻¹; MS (20 ev) *m/e*: 226 (M+1), 201.2, 174.2, 149.0, 117.1, 114.1, 105.1, 91.1, 79.1, 77.1; HRMS (EI) m/e

Tricycles via Intramolecular Diels-Alder Reaction

calcd for C₁₆H₁₉N 225.1517, found 225.1523.

2-Oxatricyclo[4.3.2.0^{3,7}]undec-8-ene (9)

The crude mixture from IMDA reaction of **1c** (0.20 mg, 1.33 mmol) was purified via flash column chromatography (silica gel, hexanes/ethyl acetate = 40/1) to give **9** (0.12 g, 0.80 mmol, 60%). ¹H-NMR (CDCl₃, 400 MHz): δ 6.21 (m, 2H), 4.38 (t, *J* = 5.1 Hz, 1H), 3.93 (t, *J* = 4.3 Hz, 1H), 2.54 (q, *J* = 5.0 Hz, 1H), 2.36 (q, *J* = 5.3 Hz, 1H), 1.89 (m, 2H), 1.68 (m, 2H), 1.56 (m, 2H), 1.40 (m, 1H), 1.19 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 130.21, 129.06, 77.93, 71.87, 43.86, 37.12, 34.72, 27.54, 26.76, 25.58; IR (CH₂Cl₂): 3056, 2925, 2361, 1734, 1653, 1559, 1419, 1387 cm⁻¹; MS (20 ev) *m/e*: 149 (M-1), 121.1, 113.2, 97.1, 83.1, 71.1, 57.1. Compound **9** was unstable and decomposed after it was stored at 0 °C for 2 days.

ACKNOWLEDGEMENTS

This work was supported by grants from the National Science Council (NSC 92-2113-M-003-009).

Received November 30, 2004.

REFERENCES

- (a) Boger, D. L.; Wolkenberg, S. E. J. Org. Chem. 2002, 67, 7361. (b) Liao, C. C.; Peddiniti, R. K. Acc. Chem. Res. 2002, 35, 856. (c) Shea, K. J.; Lease, J. G.; Ziller, J. W. J. Am. Chem. Soc. 1990, 112, 8627.
- Takusu, K.; Mizutani, S.; Ihara, M. J. Org. Chem. 2002, 67, 2881.
- 3. Shea, K. J.; Wise, S. J. Am. Chem. Soc. 1978, 100, 6519.
- Ng, S. M.; Beaudry, C. M.; Trauner, D. Org. Lett. 2003, 5, 1701.
- 5. Grieco, P. A.; Larsen, S. D. J. Org. Chem. 1986, 51, 3553.
- (a) Yeh, M. C. P.; Sheu, B. A.; Fu, H. W.; Tau, S. I.; Chuang, L. W. J. Am. Chem. Soc. 1993, 115, 5941. (b) Yeh, M. C. P.; Sun, M. L.; Lin, S. K. Tetrahedron Lett. 1991, 32, 113. (c) Yeh, M. C. P.; Liang, J. H.; Jiang, Y. L.; Tsai, M. S. Tetrahedron 2003, 59, 3409. (d) Yeh, M. C. P.; Chuang, S. C.; Lai, M. L.; Chou, C. C. Organometallics 1997, 16, 4435. (e) Blankenfeldt, W.; Liao, J. W.; Lo, L. C.; Yeh, M. C. P. Tetrahedron Lett. 1996, 37, 7361.
- 7. Methot, J. L.; Roush, W. R. Org. Lett. 2003, 5, 4223.
- Taber, D. F. Intramolecular Diels-Alder and AlderEne Reactions; Springer-Verlag: Berlin, 1984. Roush, W. R. Adv. Cycloaddit. 1990, 2, 91.
- Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* 1996, 15, 1518.
- Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.