Synthesis of 2-Azaspiro[4.6]undec-7-enes from N-Tosyl- N -(3-arylpropargyl)-Tethered 3-Methylcyclohex-2-en-1-ols

Ming-Chang P. Yeh,* Chia-Jung Liang, Chern-Wei Fan, Wei-Hang Chiu, and Jun-Yuan Lo
Department of Chemistry, National Taiwan Normal University, 88 Ding-Jou Road, Section 4, Taipei 11677, Taiwan, Republic of China

S Supporting Information

Abstract

The FeCl_{3}-promoted synthesis of 2-azaspiro[4.6]-undec-7-ene rings proceeds via ring expansion/cyclization/chlorination of N-tosyl- N-(3-arylpropargyl)-tethered 6-methylbicyclo[4.1.0]heptan-2-ols. This azaspirocyclic ring skeleton can also be obtained in one pot from the tert-butyldimethylsilylprotected N-tosyl- N-(3-arylpropargyl)-tethered 3-methylcyclohex-2-en-1-ols and diethylzinc/diiodomethane.

INTRODUCTION

The development of facile and practical synthetic strategies for the construction of azaspirocyclic building blocks is of great importance because such ring skeletons are present in numerous natural products with a range of biological interest. ${ }^{1}$ Therefore, many studies have been devoted to construct these structural motifs, including the ruthenium-catalyzed ringclosing metathesis reaction of nitrogen heterocycles possessing geminal olefinic side chains, ${ }^{2 a-d}$ the rhodium-catalyzed cycloaddition of N-tosyl-linked 1,6-dien-10-ynes followed by oxidative cleavage of the carbon-carbon double bond of the resulting azatricycles, ${ }^{3}$ the thermolysis of N-unsaturated alkyl-N-alkyl- β-ketoamides, ${ }^{4}$ the platinum(II)-catalyzed reaction of cyclic N-sulfonyl enamines with the terminal alkyne, ${ }^{5}$ the cationic palladium-catalyzed ene-type cyclization of N-tosyllinked cyclic 1,7 -enynes, ${ }^{6}$ the thiourea-catalyzed Michael addition of β-ketoamides to methyl vinyl ketone followed by spirolactamization, ${ }^{7}$ the cationic gold(I)-catalyzed addition of silyl enol ethers to the terminal alkyne, ${ }^{8}$ and the gold-catalyzed addition of five-membered-ring β-ketoamides to the tethered unactivated alkene. ${ }^{9}$ While most of these approaches focused on synthesis of azaspiro[4.4]nonane and -[4.5]decane ring skeletons, methods for the construction of the azaspiro[4.6]undecene scaffold were limited. ${ }^{2 \mathrm{~b}, 6 \mathrm{~b}}$ Herein, we report a simple and mild synthesis of (Z)-4-(arylchloromethylene)-substituted azaspiro[4.6]undec-7-enes from (3-arylpropargyl)tosylamidetethered 6-methylbicyclo[4.1.0]heptan-2-ols and FeCl_{3}. In this reaction, the iron salt acts as the Lewis acid to remove the hydroxyl group of the bicyclic ynols, affording a bicyclo[4.1.0]-hept-2-yl cationic intermediate. anti-Addition of the cyclopropylcarbinyl cation and a chloride ion across the alkyne provides the azaspiro[4.6] undec-7-ene derivatives. Moreover, this azaspirocyclic skeleton can also be constructed in one pot by reaction of tert-butyldimethylsilyl-protected N -tosyl- N -
propargyl-tethered 3-methylcyclohex-2-en-1-ols with diethylzinc/diiodomethane.

RESULTS AND DISCUSSION

The starting N-tosyl- N -(3-arylpropargyl)-tethered 6-methylbicyclo[4.1.0]heptan-2-ols 1 were prepared from cyclopropanation of the known N-tosyl- N -propargyl-tethered 3-methylcyclohex-2-en-1-ols ${ }^{10}$ with the Furukawa-modified Sim-mons-Smith reagent derived in situ from diethylzinc and diiodomethane ${ }^{11}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and ether at $0{ }^{\circ} \mathrm{C}$ in $68-90 \%$ yields. Compound 1a was used as the model substrate to search optimal reaction conditions for the ring expansion/cyclization/ chlorination reaction, as revealed in Table 1. A moderate yield (66%) of the desired (Z)-4-(chlorophenylmethylene)-2-tosyl-2-azaspiro[4.6]undec-7-ene (2a) was obtained when 1a was mixed with 1.2 equiv of FeCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $30{ }^{\circ} \mathrm{C}$ under nitrogen for 1 min (Table 1, entry 1). The Z-configuration of 2a was confirmed by NMR spectroscopies and was further secured by X-ray diffraction analysis (Figure 1). A comparable yield (63%) of $2 \mathbf{a}$ was achieved when the reaction was run in open air for 1 min at $30^{\circ} \mathrm{C}$ (Table 1, entry 1). Therefore, the following optimization experiments were carried out under an ambient atmosphere. At $0^{\circ} \mathrm{C}$, 1a gave $\mathbf{2 a}$ in 73% yield upon treatment with 1.2 molar equiv of FeCl_{3} for 3 min (Table 1, entry 2). Lowering the reaction temperature to $-15^{\circ} \mathrm{C}$ for 3 \min and $-78{ }^{\circ} \mathrm{C}$ for 4 h provided 2a in 82% and 75% yields, respectively (Table 1 , entries 3 and 4). The use of 1.2 equiv of FeBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-15{ }^{\circ} \mathrm{C}$ resulted in the formation of the brominated azaspiro[4.6] undecene derivative 3^{12} (Figure 2) in 81% yield, whereas the use of $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was less effective and gave 2a in 70% yield after 50 min at $30^{\circ} \mathrm{C}$ (Table 1, entry

[^0]Table 1. Optimization of the Ring Expansion/Cyclization/ Chlorination of 1a to 2a

	 1a	$\begin{gathered} -\mathrm{Ph} \\ = \end{gathered}$	ditions		
entry	acid	solvent	temp (${ }^{\circ} \mathrm{C}$)	time	yield (\%) ${ }^{\text {a }}$
1	FeCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	30	1 min	63
2	FeCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	3 min	73
3	FeCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-15	3 min	82
4	FeCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78	4 h	75
5	$\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	30	50 min	70
6	TiCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-15	1 min	67
7	InCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	30	25 min	54
8	ZnCl_{2}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	30	1 h	49
9	(TMS) Cl	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	30	24 h	0
10	$\mathrm{Fe}(\mathrm{OTf})_{3}{ }^{\text {b }}$	MeOH	30	24 h	0
11	$\mathrm{HCl}(\mathrm{aq})^{c}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-15	10 min	10
12	FeCl_{3}	DCE	-15	1 min	35
13	FeCl_{3}	DBE	30	1 min	52
14	FeCl_{3}	DBM	-15	1.5 h	80
15	FeCl_{3}	$\mathrm{CH}_{3} \mathrm{CN}$	30	24 h	0

${ }^{a}$ All reactions were conducted using 0.1 M 1 a and 1.2 molar equiv of acids in the air, and yields were obtained by flash column chromatography. ${ }^{b}$ A catalytic amount ($10 \mathrm{~mol} \%$) of $\mathrm{Fe}(\mathrm{OTf})_{3}$ was used. ${ }^{c}$ An excess amount of $\mathrm{HCl}(\mathrm{aq})$ was used.

Figure 1. X-ray crystallographic structure of 2a.

$1 i$

Figure 2. Compounds 3, 1i, and 4.
5). The reaction of $\mathbf{1 a}$ with 1.2 equiv of TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -15 ${ }^{\circ} \mathrm{C}$ took place instantaneously and afforded 2 a in 67% yield (Table 1, entry 6), while other Lewis acids, such as InCl_{3} and ZnCl_{2}, were much less reactive and generated 2 a in 54% and 49% yields (Table 1, entries 7 and 8), respectively. On the other hand, (TMS) Cl did not give any desired product 2a
(Table 1, entry 9), and the use of a catalytic amount of $\mathrm{Fe}(\mathrm{OTf})_{3}$ at $30{ }^{\circ} \mathrm{C}$ for 24 h with an external source of nucleophile (MeOH, 2.0 molar equiv) did not give any cyclized products (Table 1, entry 10). Moreover, treatment of 1a with an excess amount of concentrated $\mathrm{HCl}(\mathrm{aq})$ at $-15{ }^{\circ} \mathrm{C}$ for 10 min in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ produced only a 10% yield of $\mathbf{2 a}$ (Table 1, entry 11), while $\operatorname{HBr}(\mathrm{aq})$ caused the decomposition of $\mathbf{1 a}$ under the same reaction conditions.

The investigation of various reaction media showed that the use of 1,2-dichloroethane (DCE) and 1,2-dibromoethane (DBE) decreased the isolated yields of $\mathbf{2 a}$ to 35% and 52% (Table 1, entries 12 and 13), respectively, whereas the use of dibromomethane (DBM) required an extended reaction time $(1.5 \mathrm{~h})$ at $-15^{\circ} \mathrm{C}$ and the desired 2 a was isolated in 80% yield (Table 1, entry 14). In contrast, no reaction took place in $\mathrm{CH}_{3} \mathrm{CN}$ even after prolonged reaction at $30^{\circ} \mathrm{C}$ for 24 h (Table 1, entry 15). Thus, the optimal reaction procedure follows: a mixture of $\mathbf{1 a}$ and FeCl_{3} (1.2 molar equiv) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-15^{\circ} \mathrm{C}$ in the air (Table 1, entry 3) until no starting substrate 1a was detected by TLC (3 min). Although ruthenium ${ }^{2 b}$ and palladium ${ }^{6 b}$ were used to construct the azaspiro[4.6]undecane ring scaffold from unsaturated N containing compounds, these protocols required complex catalyst systems and higher reaction temperatures (40-100 ${ }^{\circ} \mathrm{C}$). Furthermore, the palladium-catalyzed cycloisomerization of 1,6-enynes produced the azaspiro[4.6]undecane ring skeleton needing seven-membered-ring starting substrates. ${ }^{6 \text { b }}$ The present method to the synthesis of the azaspiro[4.6]undecenes is operated without removal of air and moisture, requiring only N -tosyl-linked six-membered cyclic 8 -aryl-2-en-7-yn-1-ols, $\mathrm{Et}_{2} \mathrm{Zn} / \mathrm{CH}_{2} \mathrm{I}_{2}$, and FeCl_{3} at $-15{ }^{\circ} \mathrm{C}$ in the air for 315 min .

With a satisfactory protocol we next examined the substrate scope of this reaction. Results of the ring expansion/ cyclization/chlorination of substrates $\mathbf{1 a} \mathbf{- h}$ to produce azaspiro[4.6] undecenes $\mathbf{2 a} \mathbf{- h}$ are listed in Scheme 1. It was

Scheme 1. Iron Trichloride-Promoted Synthesis of Azaspiro[4.6] undecene Derivatives 2

observed that the reaction was quite general with a phenyl or tolyl group at the alkyne terminus, for example, $\mathbf{1 a} \mathbf{- d}$, as the yields of desired products $\mathbf{2 a}$-d ranged from 58% to 82%. Only the Z-isomers of the chloro-containing azacycles $\mathbf{2 a}$-d were noticed in $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of crude mixtures (vide infra). It was found that a bromine atom at the C-4 position of the phenyl ring, for example, $\mathbf{1 e}$ and $\mathbf{1 f}$, had little influence on product yields, as azaspirocycles $2 \mathrm{e}^{12}$ and 2 f were isolated in 77% and 70% yields, respectively. However, substrate 1g, bearing a carbethoxy group at the $\mathrm{C}-3$ position of the phenyl ring, reacted less efficiently with FeCl_{3} to produce the desired product $2 \mathrm{~g}^{12}$ in 46% yield. The electron-donating methoxy
group at the C-3 position of the phenyl ring, for example, $\mathbf{1 h}$, did not affect the activity of FeCl_{3} and afforded the corresponding azaspirocycle $\mathbf{2 h}$ in 77% isolated yield. Unfortunately, the reaction of the substrate with the stronger electron-withdrawing nitro group at the C-4 position of the phenyl ring, for example, $\mathbf{1 i}$ (Figure 2), failed to give any cyclized products. The homoallylic chloride 4^{12} was isolated in 64% yield (Figure 2). It must be mentioned that compounds bearing a methyl substituent at the alkynyl terminus or with a terminal alkyne led to decomposition of starting substrates upon treatment with FeCl_{3}.

A reaction pathway is speculated in Scheme 2. Detachment of the hydroxyl group of $\mathbf{1}$ by FeCl_{3} led to the bicyclo[4.1.0]-

Scheme 2. Plausible Mechanism for Formation of 2 and 4

hept-2-yl cation 5a, which may rearrange to the sevenmembered tertiary cation 5b and the bicyclic tertiary cation 6. ${ }^{13}$ A subsequent anti-addition of the cyclopropylcarbinyl cation and a chloride ion across the alkyne of 5a gave the azaspiro[4.6]undecene derivative 2 with Z-selectivity. Alternatively, anti-addition of the tertiary cation and a chloride ion across the alkyne of $\mathbf{5 b}$ also led to the formation of $\mathbf{2}$. A similar reaction path involving a bicyclo[4.1.0]hept-2-yl cation for the synthesis of bicyclo[5.3.0] decane derivatives was reported in the literature. ${ }^{14}$ However, cyclization/chlorination of 1 i , with a p-nitrophenyl group at the alkyne, did not occur, but instead attack of a chloride ion at the cyclopropyl ring of intermediate 6 took place, generating the homoallylic chloride 4 (Scheme 2).

Interestingly, compound $\mathbf{1 j}$ with the electron-releasing methoxy group at the C-4 position of the phenyl ring gave the azatricyclic compound 7^{12} as the only stereoisomer isolated in 57% yield (Scheme 3). It is worth noting that three stereogenic centers of azatricycle 7 are created in a single step and only one diastereomer is isolated. The formation of 7 is suggested in Scheme 3. The initial formed bicyclo[4.1.0]hept-2yl cation 8 was attacked by the electron-rich (p methoxyphenyl)alkynyl group to give the allenyl intermediate 9. anti-Addition of a chloride anion and the sp-hybridized carbon center of the allenyl moiety across the double bond led to azatricycle 7 as a single diastereomer. The stereochemistry of 7 was confirmed by a single-crystal X-ray analysis (Figure 3). A similar azatricyclic ring obtained by the platinum-catalyzed cycloisomerization of the propargyltosylamide-tethered cycloheptatriene in toluene at $90^{\circ} \mathrm{C}$ for 10 h was reported in the literature. ${ }^{15}$

Scheme 3. Plausible Mechanism for the Formation of Compound 7

1 j
8

7

Figure 3. X-ray crystallographic structure of 7.
Unfortunately, treatment of 5-phenyl-4-pentynyl-tethered bicyclo[4.1.0]heptan-1-ol 11, readily accessible by cyclopropanation of the known cyclic enynol 10, ${ }^{16}$ gave a complex mixture of products when treated with 1.2 molar equiv of FeCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ in the air for 3 min (Scheme 4). Much to our

Scheme 4. Reaction of Compound 11 with Iron Trichloride

delight, bicyclo[4.1.0]heptan-2-one 12a afforded, upon reaction with 1.5 molar equiv of FeCl_{3} in DBE at $50^{\circ} \mathrm{C}$ for 1 h , a 50% yield of (E)-1-(chlorophenylmethylene)spiro[4.6]undecan-8one (13a). ${ }^{12}$ Several examples of the FeCl_{3}-promoted ring expansion/cyclization/chlorination of the bicyclic phenylalkynones 12a-f to afford the C-4-substituted spiro[4.6]-undecan-8-ones 13a-f are summarized in Scheme 5. The structure elucidation of 13 was achieved by X-ray diffraction analysis of 13a and 13c. In general, the FeCl_{3}-promoted synthesis of the spiro[4.6]undecan-8-one derivatives required longer reaction times ($1-6 \mathrm{~h}$) at $50{ }^{\circ} \mathrm{C}$ in DBE and in moderate yields (45-62\%).

Surprisingly, when the cyclopropanation was performed through treatment of the tert-butyldimethylsilyl-protected (3-

Scheme 5. Iron Trichloride-Promoted Synthesis of Spiro[4.6] undecan-8-ones 13

arylpropargyl)sulfonamide-tethered 3-methylcyclohex-2-en-1-ol with diethylzinc and diiodomethane in DCE, the azaspiro[4.6]undecene ring skeleton was afforded directly. Thus, the reaction of the TBS-protected N -tosyl-linked six-membered 8-phenyl-2-en-7-yn-1-ol 14a with $\mathrm{Et}_{2} \mathrm{Zn}$ and $\mathrm{CH}_{2} \mathrm{I}_{2}$ in DCE at $50^{\circ} \mathrm{C}$ under 1 atm of nitrogen for 9 h resulted in the direct formation of the iodine-incorporated 2 -azaspiro[4.6]undec-7-ene derivative $15 a^{12}$ in 43% isolated yield (Table 2, entry 1). The

Table 2. One-Pot Process for the Construction of Azaspiro[4.6] undecene Derivatives 15^{a}
entry \quad substrate
${ }^{a}$ All reactions were run in dried DCE under nitrogen, and yields were obtained after flash column chromatography.
advantageous feature of this procedure is that it is a one-pot process in which the cyclopropanation of the olefin, the ring expansion of the resulting bicyclo[4.1.0]heptane ring, and cyclization/iodination of the newly formed N-propargyltethered cyclopropylcarbinyl cation proceeded successively to provide azaspirocycle 15 a . It was suggested that the initial formed ZnI_{2}, generated from $\mathrm{Et}_{2} \mathrm{Zn}$ and $\mathrm{CH}_{2} \mathrm{I}_{2}$, may trigger the desiloxylation of $\mathbf{1 4 a}$ to form a bicyclo[4.1.0]hept-2-yl cation which then undergoes the same ring expansion/cyclization/ halogenation as that found for intermediate 5 , affording 15a as a single stereoisomer. Several examples of (Z)-4-(iodoaryl-methylene)-2-tosyl-2-azaspiro[4.6]undec-7-enes in a multistep, one-pot synthesis from TBS-protected N-tosyl-linked sixmembered cyclic 8 -aryl-2-en-7-yn-1-ols 14 and $\mathrm{Et}_{2} \mathrm{Zn} / \mathrm{CH}_{2} \mathrm{I}_{2}$ are listed in Table 2. In general, the one-pot process required a higher reaction temperature $\left(50^{\circ} \mathrm{C}\right)$ and longer reaction times ($9-25 \mathrm{~h}$) in DCE under nitrogen. As illustrated in Table 2, substrate $\mathbf{1 4 d}$ with two methyl groups at the C-5 position of the six-membered ring obtained the best result (73%, Table 2, entry 4). Moreover, substrate 14 i with the $\mathrm{C}-4$ methoxyphenyl group at the alkyne terminus underwent a reaction with $\mathrm{Et}_{2} \mathrm{Zn} / \mathrm{CH}_{2} \mathrm{I}_{2}$ analogous to that observed for $\mathbf{1} \mathbf{j}$, generating the iodine-
containing azatricycle $\mathbf{1 6}^{12}$ as the only diastereomer in 31% yield (Scheme 6).

Scheme 6. Diethylzinc/Diiodomethane-Promoted Synthesis

 of Azatricycle 16

In conclusion, this work showed simple and mild methods for the construction of (Z)-4-(arylchloromethylene)-substituted azaspiro[4.6] undecene ring skeletons from N -tosyl- N -(3-arylpropargyl)-tethered 3-methylcyclohex-2-en-1-ol, diethylzinc/diiodomethane, and the economic and environmentally friendly iron trichloride. This azaspirocyclic ring skeleton can be obtained directly from treatment of TBS-protected N -tosylN -(3-arylpropargyl)-tethered 3-methylcyclohex-2-en-1-ol with diethylzinc/diiodomethane. Further studies on the one-pot synthesis of other heterocycles using the Furukawa reagent are currently under way in our laboratory.

EXPERIMENTAL SECTION

General Considerations. All Lewis acids, dichloromethane (DCM), and dibromoethane (DBE) were purchased from commercial sources and were used without further purification. Dichloroethane (DCE) used for general procedure V was dried by passage through $\mathrm{Al}_{2} \mathrm{O}_{3}$. Flash column chromatography was carried out with silica gel (230-400 mesh) using the indicated solvents. All melting points were determined in open capillaries and are uncorrected. ${ }^{1} \mathrm{H}$ nuclear magnetic resonance (NMR) spectra were obtained with 400 and 500 MHz spectrometers. The chemical shifts are reported in parts per million with either tetramethylsilane $(0.00 \mathrm{ppm})$ or $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm})$ as the internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were recorded with 100 and 125 MHz spectrometers with $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ as the internal standard. Infrared (IR) spectra were recorded as neat solutions. Highresolution mass spectra were obtained with a double-focusing mass spectrometer.

General Procedure I for the Synthesis of Starting Substrates 1. To a solution of 1,3 -cyclohexanedione ($3.360 \mathrm{~g}, 30 \mathrm{mmol}$) and isobutanol ($10 \mathrm{~mL}, 108 \mathrm{~mol}$) in toluene $(20 \mathrm{~mL})$ was added p toluenesulfonic acid $(0.260 \mathrm{~g}, 1.50 \mathrm{mmol})$. The reaction mixture was heated to reflux to remove water using a Dean-Stark apparatus. After 10 h , the mixture was cooled to room temperature followed by addition of triethylamine $(0.50 \mathrm{~mL}, 3.73 \mathrm{mmol})$, and the mixture was concentrated under reduced pressure. The crude mixture was purified via flash chromatography (silica gel, 50% ethyl acetate/hexanes) to give 3-isobutoxycyclohex-2-en-1-one ($4.45 \mathrm{~g}, 26.4 \mathrm{mmol}, 88 \%$). To a stirred solution of tetramethylethylenediamine ($9.06 \mathrm{~mL}, 60 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(1.6 \mathrm{M}, 37.5 \mathrm{~mL}, 60 \mathrm{mmol})$ dropwise, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h followed by addition of dimethyl sulfide ($4.43 \mathrm{~mL}, 60 \mathrm{mmol}$). The resulting mixture was stirred at room temperature for 4 h . The mixture was cooled to $-78^{\circ} \mathrm{C}$, and then 3-isobutoxy-2-cyclohexen-1-one ($5.040 \mathrm{~g}, 30 \mathrm{mmol}$) in THF (30 mL) was added. The reaction mixture was further stirred for 2 h at room temperature followed by addition of $2.5 \mathrm{~N} \mathrm{HCl}(\mathrm{aq})(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was extracted with ether $(30 \mathrm{~mL} \times 4)$. The mixture was concentrated under reduced pressure. The crude mixture was purified via flash chromatography (silica gel, 10% ethyl acetate/ hexanes) to give 3-((methylthio) methyl) cyclohex-2-en-1-one (3.840 g, $24.6 \mathrm{mmol}, 82 \%)$. To a stirred solution of 3-((methylthio)methyl)-cyclohex-2-en-1-one ($3.50 \mathrm{~g}, 22.4 \mathrm{mmol}$) in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was
added methyl iodide $(12.710 \mathrm{~g}, 89.6 \mathrm{mmol})$ at room temperature. The mixture was heated at $45^{\circ} \mathrm{C}$ for 3 days in a sealed tube. The reaction mixture was poured into $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$. The combined organic extracts were dried to give the crude 3-(iodomethyl)cyclohex-2-en-1-one. The crude product was used for the following step without further purification. To the crude 3-(iodomethyl)cyclohex-2-en-1-one ($0.98 \mathrm{~g}, 4.15 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 6 mL of acetone was added 4-methyl- N -(3-phenylprop-2-$\mathrm{yn}-1$-yl) benzenesulfonamide $(0.91 \mathrm{~g}, 3.190 \mathrm{mmol})$ in 6.0 mL of acetone via syringe. The mixture was reacted at room temperature for 10 h . The reaction mixture was concentrated, poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic extracts were dried. The crude mixture was purified via flash chromatography (silica gel, 30% ethyl acetate/hexanes) to give of the crude 4-methyl- N -((3-oxocyclohex-1-en-1-yl)methyl)- N -(3-phenyl-prop-2-yn-1-yl)benzenesulfonamide ($1.01 \mathrm{~g}, 2.57 \mathrm{mmol}, 81 \%$). To a solution of the crude 4-methyl- N-((3-oxocyclohex-1-en-1-yl)methyl)N -(3-phenylprop-2-yn-1-yl)benzenesulfonamide ($2.10 \mathrm{~g}, 5.34 \mathrm{mmol}$) and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(1.99 \mathrm{~g}, 5.34 \mathrm{~mol})$ in $\mathrm{MeOH}(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(0.240 \mathrm{~g}, 6.41 \mathrm{mmol})$, and the mixture was stirred for 1 h. The mixture was concentrated under reduced pressure, poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic extracts were dried to give N -((3-hydroxycyclohex-1-en-1-yl)methyl)-4-methyl-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide. To the above crude enynol was added $\mathrm{Et}_{2} \mathrm{Zn}$ (1.5 $\mathrm{M}, 10.68 \mathrm{~mL}, 16.02 \mathrm{mmol})$ in ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} / 5 \mathrm{~mL})$ followed by slow addition of $\mathrm{CH}_{2} \mathrm{I}_{2}(5.72 \mathrm{~g}, 21.36 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was allowed to stir at $30^{\circ} \mathrm{C}$ for 10 h . The reaction mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The crude mixture was purified via flash chromatography (silica gel, 30% ethyl acetate/hexanes) to give 1a.

Data for (\pm)-N-(((1S,5R,6S)-5-hydroxybicyclo[4.1.0]heptan-1-yl)-methyl)-4-methyl-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (1a): yield $1.99 \mathrm{~g}(4.59 \mathrm{mmol}, 86 \%)$; white solid; $\mathrm{mp} 131-132^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3383,2935,1599,1443,1347,1162,1116,1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.17(\mathrm{~m}, 5$ H), 7.04-6.95 (m, 2 H), $4.50(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=18.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.63(\mathrm{~m}, 1 \mathrm{H})$, $1.55-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.11-0.97(\mathrm{~m}, 1 \mathrm{H}), 0.66-$ $0.60(\mathrm{~m}, 1 \mathrm{H}), 0.60-0.53(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 143.4, 135.9, 131.4, 129.5, 128.4, 128.1, 127.7, 122.0, 86.2, 81.4, 66.5, 54.8, 36.7, 29.8, 25.1, 23.6, 21.4, 20.4, 20.1, 12.1; HRMS (ESI) m / e 432.1603, calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 432.1603$.

Data for (\pm)-N-(((1S,5R,6S)-5-hydroxybicyclo[4.1.0]heptan-1-yl)-methyl)-4-methyl-N-(3-p-tolylprop-2-yn-1-yl)benzenesulfonamide (1b): yield 0.60 g ($1.35 \mathrm{mmol}, 90 \%$) from the corresponding enone ($0.61 \mathrm{~g}, 1.50 \mathrm{mmol}$); white solid; mp $130-131{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3375$, 2935, 1598, 1347, 1161, $1092 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.73(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2$ H), $6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=$ $18.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}$, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.09-1.99(\mathrm{~m}, 1 \mathrm{H})$, $1.69-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.38(\mathrm{br}, 1 \mathrm{H}), 1.30-$ $1.16(\mathrm{~m}, 2 \mathrm{H}), 1.11-0.98(\mathrm{~m}, 1 \mathrm{H}), 0.68-0.60(\mathrm{~m}, 1 \mathrm{H}), 0.60-0.54$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.1,138.4,135.7,131.1$, 129.3, 128.6, 127.5, 118.7, 86.1, 80.5, 66.1, 54.6, 36.5, 29.5, 25.0, 23.4, 21.2, 20.1, 20.0, 12.0; HRMS (ESI) m / e 446.1761, calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 446.1766$.

Data for (\pm)- $N-(((1 R, 5 R, 6 S)-5-h y d r o x y-3,3-d i m e t h y l b i c y c l o[4.1 .0]-~$ heptan-1-yl)methyl)-4-methyl-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (1c): yield $0.30 \mathrm{~g}(0.64 \mathrm{mmol}, 64 \%)$ from the corresponding enone ($0.42 \mathrm{~g}, 1.00 \mathrm{mmol}$); white solid; mp 143-144 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3380,2953,1490,1347,1162,1094 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 5 \mathrm{H})$, $7.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=18.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.39-4.31(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.50(\mathrm{~m}$, $1 \mathrm{H}), 1.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.23-1.15(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3$ H), $0.83-0.71(\mathrm{~m}, 2 \mathrm{H}), 0.46(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.4,136.0,131.4,129.4,128.4,128.1,127.7,122.0$, 86.2, 81.4, 65.3, 55.3, 41.8, 39.3, 36.9, 32.0, 31.5, 25.6, 22.0, 21.3, 20.6, 14.4; HRMS (ESI) m/e 460.1913, calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+$ $\mathrm{Na}]^{+} 460.1913$.

Data for (\pm)-N-(((1R,5R,6S)-5-hydroxy-3,3-dimethylbicyclo[4.1.0]-heptan-1-yl)methyl)-4-methyl-N-(3-p-tolylprop-2-yn-1-yl)benzenesulfonamide (1d). yield $0.31 \mathrm{~g}(0.65 \mathrm{mmol}, 65 \%)$ from the corresponding enone ($0.44 \mathrm{~g}, 1.00 \mathrm{mmol}$); white solid; mp 134-135 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3379,2952,1449,1347,1161,1094 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H})$, $7.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=18.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}) 4.37-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$, $1.88(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.14(\mathrm{~m}, 2 \mathrm{H})$, $1.41(\mathrm{~s}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.82-0.70(\mathrm{~m}, 1 \mathrm{H}), 0.44(\mathrm{t}$, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.3,138.6,136.1$, 131.4, 129.5, 128.9, 127.8, 119.0, 86.3, 80.7, 65.4, 55.3, 41.8, 39.3, 37.0, 32.0, 31.5, 25.6, 22.0, 21.4, 20.6, 14.4; HRMS (ESI) m/e 474.2072, calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 474.2079$.

Data for $(\pm)-N$-(3-(4-bromophenyl)prop-2-yn-1-yl)-N-(((1S,5R,6S)-5-hydroxybicyclo[4.1.0]heptan-1-yl)methyl)-4-methylbenzenesulfonamide (1e): yield $0.67 \mathrm{~g}(1.32 \mathrm{mmol}, 88 \%)$ from the corresponding enone ($0.71 \mathrm{~g}, 1.50 \mathrm{mmol}$); white solid; mp 130-132 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3393,2928,1598,1346,1161,1115,1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J$ $=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J$ $=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.98$ $(\mathrm{m}, 1 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 1$ H), $1.30-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.11-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.67-0.61(\mathrm{~m}, 1 \mathrm{H})$, $0.61-0.52(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 143.1, 135.5, 132.6, 131.0, 129.2, 127.4, 122.3, 120.6, 84.7, 82.5, 65.9, 54.6, 36.3, 29.3, 24.8, 23.3, 21.1, 19.9, 12.0; HRMS (ESI) $m / e ~ 510.0718$, calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{BrNO}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 510.0714$.

Data for (\pm)-N-(3-(4-bromophenyl)prop-2-yn-1-yl)-N((1 R,5R,6S)-5-hydroxy-3,3-dimethylbicyclo[4.1.0]heptan-1-yl)-methyl)-4-methylbenzenesulfonamide (1f): yield $0.37 \mathrm{~g}(0.68 \mathrm{mmol}$, $68 \%)$ from the corresponding enone $(0.50 \mathrm{~g}, 1.00 \mathrm{mmol})$; white solid; mp $121-122{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3394,2952,1485,1347,1161,1094$ cm^{-1}; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-$ $7.34(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.82(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=$ $18.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.30(\mathrm{~m}, 2 \mathrm{H}) 3.45(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}$, $J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 1$ H), $1.37-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.13(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3$ H), $0.83-0.75(\mathrm{~m}, 1 \mathrm{H}), 0.73-0.67(\mathrm{~m}, 1 \mathrm{H}), 0.46(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.1,135.5,132.6,131.0,129.2$, 127.4, 122.3, 120.6, 84.7, 82.5, 65.9, 54.6, 36.3, 29.3, 24.8, 23.3, 21.1, 19.9, 12.0; HRMS (ESI) m / e 538.1027, calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{BrNO}_{3} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 538.1036$.

Data for (\pm)-ethyl 3-(3-(N-(((1S,5R,6S)-5-hydroxybicyclo[4.1.0]-heptan-1-yl)methyl)-4-methylbenzenesulfonamido)prop-1-yn-1-yl)benzoate (1g): yield $0.51 \mathrm{~g}(1.02 \mathrm{mmol}, 68 \%)$ from the corresponding enone $(0.70 \mathrm{~g}, 1.50 \mathrm{mmol})$; colorless oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3412$, 2937, 1719, 1599, 1347, 1229, 1161, $1093 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.96-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.68$ $(\mathrm{m}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-$ $7.16(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.35(\mathrm{~m}, 3 \mathrm{H}), 4.26-$ $4.18(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.29(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.44$ $(\mathrm{m}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.11-1.01(\mathrm{~m}$, $1 \mathrm{H}), 0.67-0.61(\mathrm{~m}, 1 \mathrm{H}), 0.60-0.53(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.6,143.6,135.7,135.4,132.4,130.6,129.4,129.3,128.2$, 127.7, 122.3, 85.1, 82.4, 66.4, 61.2, 54.8, 36.5, 29.7, 25.1, 23.6, 21.3, 20.4, 20.1, 14.3, 12.1; HRMS (ESI) $m / z=504.1812$, calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+} 504.1821$.

Data for (\pm)- N-(((1S,5R,6S)-5-hydroxybicyclo[4.1.0]heptan-1-yl)-methyl)-N-(3-(3-methoxyphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1 h): yield 0.41 g ($0.89 \mathrm{mmol}, 82 \%$) from the corresponding enone ($0.46 \mathrm{~g}, 1.08 \mathrm{mmol}$); white solid; mp 122$123{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3403,2936,1598,1347,1290,1162,1116,1092$, $1041 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.79(\mathrm{~m}, 2$ H), $6.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.03 (d, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.72-$ $1.60(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.11-0.99$ $(\mathrm{m}, 1 \mathrm{H}), 0.63(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.60-0.53(\mathrm{~m}, 1 \mathrm{H})) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.8,143.4,135.5,132.0,129.3,128.5,127.5$, 123.1, 87.0, 84.0, 66.0, 54.9, 36.3, 29.3, 24.9, 23.3, 21.1, 20.0, 19.9, 12.6; HRMS (ESI) m / e 462.1719, calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{SNa}[\mathrm{M}+$ $\mathrm{Na}]^{+} 462.1715$.

Data for (\pm)-N-(((1S,5R,6S)-5-hydroxybicyclo[4.1.0]heptan-1-yl)-methyl)-4-methyl-N-(3-(4-nitrophenyl)prop-2-yn-1-yl)benzenesulfonamide (1i): yield 0.36 g ($0.79 \mathrm{mmol}, 38 \%$) from the corresponding enone ($0.91 \mathrm{~g}, 2.08 \mathrm{mmol}$); white solid; mp 101-103 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3393,2937,1594,1519,1344,1161,1092,854 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{dt}, J=8.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{dt}, J=8.8,2.0 \mathrm{~Hz}, 2$ H), $4.52(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.18$ $(\mathrm{m}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ $(\mathrm{s}, 3 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.40(\mathrm{~m}, 3$ H), $1.29-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.12-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.66(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1$ H), $0.58-0.52(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.8$, $134.4,135.5,132.0,129.3,128.5,127.5,123.1,87.0,84.0,66.0,54.9$, 36.3, 29.3, 24.9, 23.3, 21.1, 20.0, 19.9, 12.1; HRMS (ESI $) ~ m / e$ 453.1476, calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{-} 453.1484$.

Data for (\pm)-N-(((1S,5R,6S)-5-hydroxybicyclo[4.1.0]heptan-1-yl)-methyl)-N-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1j): yield 0.47 g ($1.02 \mathrm{mmol}, 79 \%$) from the corresponding enone ($0.55 \mathrm{~g}, 1.29 \mathrm{mmol}$); white solid; $\mathrm{mp} 124-$ $125{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3386,2936,1606,1346,1249,1161,1092,1032$ cm^{-1}; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.50(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.18(\mathrm{~m}, 1$ H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1$ H), $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.41$ $(\mathrm{m}, 3 \mathrm{H}), 1.30-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.12-0.98(\mathrm{~m}, 1 \mathrm{H}), 0.62-0.57(\mathrm{~m}, 2$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.8,143.3,135.5,132.0,129.3$, 128.5, 127.5, 123.1, 87.0, 84.0, 66.0, 54.9, 36.3, 29.3, 24.9, 23.3, 21.1, 20.0, 19.9, 12.0; HRMS (ESI) m / e 462.1706, calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{NaS}$ $[\mathrm{M}+\mathrm{Na}]^{+} 462.1715$.

General Procedure II for Formation of Compounds 2a-h, 3, 4, and 7. To a 25 mL oven-dried round-bottom flask equipped with a stir bar were added compound $\mathbf{1 a}(0.10 \mathrm{~g}, 0.25 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5$ $\mathrm{mL})$, and $\mathrm{FeCl}_{3}(0.049 \mathrm{~g}, 0.30 \mathrm{mmol})$ at $-15{ }^{\circ} \mathrm{C}$ under air. The reaction mixture was stirred at $-15{ }^{\circ} \mathrm{C}$ for 3 min . The solvent was concentrated, and the residue was added to 10 mL of water. The resulting mixture was extracted with diethyl ether $(10 \times 3 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over MgSO_{4}, filtered through a bed of Celite, and concentrated to give the crude mixture. The crude mixture was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give $\mathbf{2 a}$.
(Z)-4-(Chlorophenylmethylene)-2-tosyl-2-azaspiro[4.6]-undec-7ene ($2 a$). The crude mixture from general procedure II ($1 \mathbf{a}, 0.11 \mathrm{~g}$, 0.25 mmol) was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give $2 \mathrm{a}(0.088 \mathrm{~g}, 0.21 \mathrm{mmol}, 82 \%)$ as a pale yellow solid: mp 191-193 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2930,1598,1450$, 1349, 1162, $1094 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.26-$ $7.24(\mathrm{~m}, 2 \mathrm{H}), 5.79-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.51-5.45(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.11(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.36$ $(\mathrm{m}, 2 \mathrm{H}), 1.20-1.13(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.7$, 143.4, 138.1, 134.0, 132.4, 129.8, 129.3, 128.9, 128.3, 128.0, 127.6, 125.3, 57.0, 53.7, 48.5, 39.8, 36.2, 28.4, 22.8, 21.6; HRMS (ESI) m / e calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{ClNO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 428.1451$, found 428.1446 . Crystals suitable for X-ray diffraction analysis were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes.
(Z)-4-(Chloro-p-tolylmethylene)-2-tosyl-2-azaspiro[4.6]-undec-7ene (2b). The crude mixture from general procedure II (1b, 0.11 g ,
0.25 mmol) was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give $\mathbf{2 b}(0.064 \mathrm{~g}, 0.15 \mathrm{mmol}, 58 \%)$ as a white solid: $\mathrm{mp} 191-192{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2925,1598,1350,1162$, $1094 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.37 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 4 \mathrm{H}), 5.81-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.53-$ $5.44(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.18(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.35$ $(\mathrm{s}, 3 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 1$ H), 1.79-1.68 (m, 1 H), 1.50-1.36 (m, 2 H), 1.24-1.11 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.7, 143.1, 138.8, 133.9, 132.4, 129.7, 129.1, 128.9, 127.9, 127.6, 125.5, 56.9, 53.7, 48.4, 39.7, 36.2, 28.3, 22.7, 21.5, 21.3; HRMS (ESI) m / e 442.1611, calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{ClNO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 442.1608$.
(Z)-4-(Chlorophenylmethylene)-10,10-dimethyl-2-tosyl-2-azaspiro[4.6]-undec-7-ene (2c). The crude mixture from general procedure II ($\mathbf{1 c}, 0.12 \mathrm{~g}, 0.25 \mathrm{mmol}$) was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give 2 c ($0.091 \mathrm{~g}, 0.20 \mathrm{mmol}, 80 \%$) as a white solid: $\mathrm{mp} 134-135^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2953, 1482, 1350, 1162, $1095 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.22$ $(\mathrm{m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.73-5.58(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~d}, J=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.09(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.74-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 2 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}), 0.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.0,143.7,132.3,132.2,129.7,128.5$, 128.2, 128.0, $92.8,61.1,58.8,51.6,51.1,40.0,35.3,34.6,33.3,26.4$, 21.6. HRMS (ESI) $m / e \mathrm{C}_{26} \mathrm{H}_{31} \mathrm{ClNO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$calcd 456.1764, found 456.1760 .
(Z)-4-(Chloro-p-tolylmethylene)-10,10-dimethyl-2-tosyl-2-azaspiro[4.6]undec-7-ene (2d). The crude mixture from general procedure II $(\mathbf{1 d}, 0.11 \mathrm{~g}, 0.25 \mathrm{mmol})$ was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give 2d $(0.074 \mathrm{~g}, 0.16 \mathrm{mmol}, 63 \%)$ as a white solid: $\mathrm{mp} 138-139{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2952, 1482, 1351, 1162, $1094 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=16 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-$ $7.08(\mathrm{~m}, 4 \mathrm{H}), 5.54-5.72(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J$ $=15 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.48(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 2 \mathrm{H})$, $1.77-1.66(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.9,143.7,141.0,138.2,132.3,129.8,128.7,128.6$, 128.1, 128.0, 93.3, 61.2, 58.8, 51.6, 51.1, 40.1, 35.4, 34.7, 33.4, 26.5, 21.6, 21.3. HRMS (ESI) $m / e \quad \mathrm{C}_{27} \mathrm{H}_{33} \mathrm{ClNO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$calcd 470.1921, found 470.1924.
(Z)-4-((4-Bromophenyl)chloromethylene)-2-tosyl-2-azaspiro[4.6]-undec-7-ene (2e). The crude mixture from general procedure II (1e, $0.12 \mathrm{~g}, 0.24 \mathrm{mmol}$) was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give $2 \mathrm{e}(0.10 \mathrm{~g}, 0.20 \mathrm{mmol}$, $82 \%)$ as a white solid: $\mathrm{mp} 205-206{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2930, 1598, 1351, 1159, $1093 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.84-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.54-5.44(\mathrm{~m}, 1 \mathrm{H}), 4.07$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1$ H), $3.10(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.94$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.51-$ $1.43(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.12(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.2,143.8,137.0,134.1,132.3,131.6,130.9$, 129.7, 127.9, 127.3, 123.9, 123.2, 56.8, 53.7, 48.5, 39.9, 36.3, 28.3, 22.7, 21.6; HRMS $\left(\mathrm{FAB}^{+}\right) m / e 506.0547$, calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{BrClNO}_{2} \mathrm{~S}[\mathrm{M}+$ $\mathrm{H}]^{+}$506.0556. Crystals suitable for X-ray diffraction analysis were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes.
(Z)-4-((4-Bromophenyl)chloromethylene)-10,10-dimethyl-2-tosyl-2-azaspiro[4.6]undec-7-ene (2f). The crude mixture from general procedure II (1f, $0.14 \mathrm{~g}, 0.25 \mathrm{mmol})$ was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give 2 f ($0.093 \mathrm{~g}, 0.18 \mathrm{mmol}, 70 \%$) as a white solid: $\mathrm{mp} 140-143{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2954, 1598, 1482, 1349, 1162, $1095 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.75-5.67(\mathrm{~m}, 1$ H), $5.66-5.62(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3$
H), $2.10(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~d}, J=14.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.1,143.9,142.7,132.5,131.3,129.9$, 129.8, 128.3, 128.0, 122.3, 90.9, 61.2, 58.7, 51.9, 51.3, 40.1, 35.5, 34.7, 33.5, 26.4, 21.6. HRMS (FAB) $m / e \mathrm{C}_{26} \mathrm{H}_{30} \mathrm{BrClNO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$calcd 534.0869, found 534.0864 .
(Z)-Ethyl 3-(chloro(2-tosyl-2-azaspiro[4.6]undec-7-en-4-ylidene)methyl)benzoate (2g). The crude mixture from general procedure II $(1 \mathrm{~g}, 0.13 \mathrm{~g}, 0.25 \mathrm{mmol})$ was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give $2 \mathrm{~g}(0.058 \mathrm{~g}, 0.12 \mathrm{mmol}$, $46 \%)$ as a pale yellow solid: mp $213-214{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2933,1721$, 1599, 1350, 1214, $1162 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07-$ $8.01(\mathrm{~m}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.40(\mathrm{~m}$, $2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.82-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.48(\mathrm{~m}, 1$ H), $4.38(\mathrm{q}, ~ J=14.4, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1$ H), $2.48(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.65$ $(\mathrm{m}, 1 \mathrm{H}), 1.51-1.32(\mathrm{~m}, 5 \mathrm{H}), 1.25-1.15(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.8,144.3,143.8,138.3,134.0,133.5,132.3,130.7$, $130.4,130.0,129.8,128.4,128.0,127.3,124.1,61.3,56.9,53.7,48.5$, 39.9, 36.2, 28.3, 22.7, 21.6, 14.3; HRMS (ESI) m/e 500.1657, calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{ClNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 500.1662$. Crystals suitable for X-ray diffraction analysis were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes.
(Z)-4-(Chloro(3-methoxyphenyl)methylene)-2-tosyl-2-azaspiro-[4.6]undec-7-ene ($2 h$). The crude mixture from general procedure II $(1 \mathrm{~h}, 0.11 \mathrm{~g}, 0.25 \mathrm{mmol})$ was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give $2 \mathrm{~h}(0.087 \mathrm{~g}, 0.19 \mathrm{mmol}$, 77%) as a pale yellow solid: mp $212-213{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2931, 1597, 1450, 1348, 1162, 1094, $1038 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{t}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.72(\mathrm{~m}$, $1 \mathrm{H}), 5.55-5.43(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=14.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1$ H), $2.47(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.68$ $(\mathrm{m}, 1 \mathrm{H}), 1.52-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.14(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2,143.7,143.2,139.2,134.0,132.4,129.7,129.3$, 128.0, 127.6, 125.0, 121.7, 114.9, 114.5, 57.0, 55.3, 53.6, 48.5, 39.7, 36.1, 28.4, 22.7, 21.6. HRMS (ESI) m / e 458.1558, calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{ClNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 458.1557$.
(Z)-4-(Bromophenylmethylene)-2-tosyl-2-azaspiro[4.6]-undec-7ene (3). The crude mixture from general procedure II (1a, $0.11 \mathrm{~g}, 0.25$ mmol , and $\mathrm{FeBr}_{3}, 0.089 \mathrm{~g}, 0.30 \mathrm{mmol}$) was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give 3 (0.097 $\mathrm{g}, 0.21 \mathrm{mmol}, 82 \%$) as a white solid: $\mathrm{mp} 214.0-214.5^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2931, 1605, 1444, 1349, 1161, $1094 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.35-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 5.80-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.52-$ $5.44(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.21(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$, 2.07-1.97 (m, 1 H), 1.97-1.91 (m, 2 H$), 1.90-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.75-$ $1.64(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.13(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.9,143.7,139.9,134.0,132.4,129.8,129.1$, $128.8,128.2,128.0,127.5,116.0,57.1,56.3,49.4,39.7,36.2,28.3,22.7$, 21.6; HRMS (ESI) m / e 472.0947, calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{BrNO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 472.0946. Crystals suitable for X-ray diffraction analysis were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes.

N-((3-(Chloromethyl)cyclohex-1-enyl)methyl)-4-methyl-N-(3-(4-nitrophenyl)prop-2-yn-1-yl)benzenesulfonamide (4). The crude mixture from general procedure II ($1 \mathbf{i}, 0.11 \mathrm{~g}, 0.25 \mathrm{mmol}$) was purified by flash column chromatography (silica gel, 5% ethyl acetate/ hexanes) to give $4(0.079 \mathrm{~g}, 0.16 \mathrm{mmol}, 64 \%)$ as a pale yellow solid: mp $123-125{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2923,1594,1519,1343,1162 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.66(\mathrm{~s}, 1$ H), $4.29(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=$ $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dq}, J=25.5, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.16-1.96(\mathrm{~m}, 2 \mathrm{H})$, $1.88-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 1 \mathrm{H}), 0.92-$ $0.80(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.6,136.1,134.7$, 132.3, 129.5, 129.0, 128.1, 127.9, 123.4, 87.6, 83.8, 53.1, 49.1, 38.1,
36.3, 26.4, 26.2, 21.5, 20.9; HRMS (ESI) m / e 495.1120, calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$495.1121. Crystals suitable for X-ray diffraction analysis were grown from diethyl ether.
(\pm)-(1S, 7S,8R)-8-Chloro-6-(4-methoxyphenyl)-3-tosyl-3azatricyclo[5.4.1.0 ${ }^{1,5}$]dodec-5-ene (7). The crude mixture from general procedure II ($\mathbf{1 j}, 0.11 \mathrm{~g}, 0.25 \mathrm{mmol})$ was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give $7(0.065 \mathrm{~g}, 0.14 \mathrm{mmol}, 57 \%)$ as a pale yellow solid: $\mathrm{mp} 212-213{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2930,1606,1341,1252,1158,1097 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8 \mathrm{~Hz}, 2$ H), $7.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{~d}, J=$ $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.77(\mathrm{~m}, 5 \mathrm{H}), 3.51(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~d}, J=12.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 1$ $\mathrm{H}), 1.47-1.35(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 159.3, 143.4, 141.5, 134.0, 133.6, 129.7, 128.5, 127.4, 125.5, 114.5, 61.6, 59.0, 58.7, 58.3, 55.3, 46.2, 36.6, 35.2, 35.2, 21.5, 21.4; HRMS (FAB ${ }^{+}$) m/e 458.1548, calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{ClNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$458.1557. Crystals suitable for X-ray diffraction analysis were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes.

Typical Experimental Procedure for Synthesis of Starting Substrates $12 \mathrm{a}-\mathrm{c}$. To a stirred solution of $t-\operatorname{BuLi}(1.6 \mathrm{M}, 12.6 \mathrm{~mL}$, 20.2 mmol) at $-78{ }^{\circ} \mathrm{C}$ was added 1-phenyl-5-iodo-1-pentyne (4.0 g , $14.8 \mathrm{mmol})$ in ether $(10 \mathrm{~mL})$ dropwise over 0.5 h , and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 0.5 h followed by addition of 3 -methoxycyclohex-2-en-1-one ($1.5 \mathrm{~g}, 11.9 \mathrm{mmol}$) in 10 mL of ether. The resulting mixture was stirred at room temperature for 12 h followed by addition of $2.5 \mathrm{~N} \mathrm{HCl}(\mathrm{aq})(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was extracted with ether $(50 \mathrm{~mL} \times 3)$. The mixture was concentrated, and the residue was purified via flash chromatography (silica gel, 5% ethyl acetate/hexanes) to give 3-(5-phenylpent-4-yn-1yl)cyclohex-2-en-1-one ($2.83 \mathrm{~g}, 8.6 \mathrm{mmol}, 82 \%$). To an oven-dried 100 mL round-bottom flask equipped with a stir bar was added NaH $(0.67 \mathrm{~g}, 16.8 \mathrm{mmol})$. The apparatus was evacuated (oil pump) and filled with nitrogen three times, and then $\mathrm{Me}_{3} \mathrm{SOI}(3.69 \mathrm{~g}, 16.78$ $\mathrm{mmol})$ and via syringe DMSO (16 mL) were added. The reaction mixture was stirred at room temperature for 0.5 h followed by addition of 3-(5-phenylpent-4-yn-1-yl)cyclohex-2-en-1-one in DMSO (2 mL), and the mixture was stirred at room temperature for 16 h . The reaction mixture was poured into water $(30 \mathrm{~mL})$ and extracted with ether ($50 \mathrm{~mL} \times 3$). The crude mixture was purified via flash chromatography (silica gel, 5% ethyl acetate/hexanes) to give 12a.

Data for 6-(5-phenylpent-4-yn-1-yl)bicyclo[4.1.0]heptan-2-one (12a): yield 1.164 g ($4.61 \mathrm{mmol}, 55 \%$); pale yellow oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3019, 2938, 2860, 2229, 1686, 1598, 1490, 1442, 1324, 1246, 758, 693, $523 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.28$ $(\mathrm{m}, 3 \mathrm{H}), 7.36-7.38(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.43(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-$ $2.31(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.79(\mathrm{~m}, 8 \mathrm{H}), 1.39-1.42(\mathrm{t}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.96-1.00(\mathrm{dd}, J=10.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.1,131.4,128.2,127.6,123.7,89.5,81.1$, 38.0, 36.1, 33.5, 27.8, 25.6, 25.5, 19.3, 18.2, 17.1; HRMS (ESI) [M + $\mathrm{Na}]^{+} m / e$ 275.1416, calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ONa} 275.1412$.

Data for (\pm)-(1S,6R)-6-(5-p-tolylpent-4-yn-1-yl)bicyclo[4.1.0]-heptan-2-one (12b): yield $1.05 \mathrm{~g}(4.0 \mathrm{mmol}, 46 \%)$ from the corresponding enone $(2.17 \mathrm{~g}, 8.6 \mathrm{mmol})$; pale yellow oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3026,2938,2861,2200,1686,1510,1444,1326,1247$, 819, $526 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.28(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.07-7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.42(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2$ H), 2.26-2.33 (m, 4 H$), 1.96-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.79(\mathrm{~m}, 7 \mathrm{H})$, $1.48-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.41(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.96-1.00(\mathrm{dd}, J$ $=10.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 209.1, 137.6, 131.3, 128.9, 120.7, 88.7, 81.1, 38.1, 36.2, 33.5, 27.8, 25.7, 25.6, 21.3, 19.3, 18.3, 17.1; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+} m / e ~ 289.1568$, calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ONa} 289.1571$.

Data for $(\pm)-(1 S, 6 R)-6-(5-(3-m e t h o x y p h e n y l) p e n t-4-y n-1-y l)-$ bicyclo[4.1.0]heptan-2-one (12c): yield 0.53 g ($1.88 \mathrm{mmol}, 43 \%$) from the corresponding enone $(1.17 \mathrm{~g}, 4.36 \mathrm{mmol})$; pale yellow oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3008,2940,2232,1686,1604,1575,1288,1205,1045,785$, $689,479 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17-7.21(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.96-6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.92(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1$
H), 6.82-6.85 (dd, $J=8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.43(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.26-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.80$ $(\mathrm{m}, 7 \mathrm{H}), 1.48-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.42(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.97-$ 1.01 (dd, $J=10.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 209.0, 159.3, 129.2, 124.8, 124.0, 116.4, 114.1, 89.4, 81.0, 55.2, 38.1, 36.2, 33.5, 27.8, 25.6, 25.5, 19.3, 18.3, 17.1; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$ $m / e=305.1518$, calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na} 305.1517$.

Typical Experimental Procedure for Synthesis of Starting Substrates $12 \mathrm{~d}-\mathbf{f}$. To a stirred solution of $t-\mathrm{BuLi}(1.6 \mathrm{M}, 6.52 \mathrm{~mL}$, 10.4 mmol) at $-78{ }^{\circ} \mathrm{C}$ was added 1-phenyl-5-iodo-1-pentyne (2.06 g , $7.64 \mathrm{mmol})$ in ether $(10 \mathrm{~mL})$ dropwise over 0.5 h , and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 0.5 h followed by addition of 3-methoxy-5,5-dimethylcyclohex-2-en-1-one ($0.94 \mathrm{~g}, 6.1 \mathrm{mmol}$) in 10 mL of ether. The resulting mixture was stirred at room temperature for 12 h followed by addition of $2.5 \mathrm{~N} \mathrm{HCl}(\mathrm{aq})(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was extracted with ether $(50 \mathrm{~mL} \times 3)$. The mixture was concentrated under reduced pressure and purified via flash chromatography (silica gel, 5% ethyl acetate/hexanes) to give 5,5-dimethyl-3-(5-phenylpent-4-yn-1-yl)cyclohex-2-en-1-one (1.26 g, 4.73 $\mathrm{mmol}, 68 \%)$. To an oven-dried 100 mL round-bottom flask equipped with a stir bar at $0{ }^{\circ} \mathrm{C}$ were added the crude enone ($1.25 \mathrm{~g}, 4.7 \mathrm{mmol}$), $\mathrm{NaBH}_{4}(0.23 \mathrm{~g}, 6.11 \mathrm{mmol})$, and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(1.75 \mathrm{~g}, 4.7 \mathrm{mmol})$ in 10 mL of methanol at $0^{\circ} \mathrm{C}$ for 20 min . The reaction mixture was poured into 50 mL of water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined orgainc solution was dried and concentrated to give the crude 5,5-dimethyl-3-(5-phenylpent-4-yn-1-yl)cyclohex-2-en-1-ol $(1.24 \mathrm{~g}, 4.6 \mathrm{mmol}, 98 \%)$. The crude enynol was used in the next step without further purification. To the above crude enynol in 10 mL of ether at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{2} \mathrm{Zn}(1.5 \mathrm{M}, 9.4 \mathrm{~mL}, 14.1 \mathrm{mmol})$ followed by slow addition of $\mathrm{CH}_{2} \mathrm{I}_{2}(5.03 \mathrm{~g}, 18.8 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was then stirred at $30^{\circ} \mathrm{C}$ for 10 h . The reaction mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The crude mixture was purified via flash chromatography (silica gel, 10% ethyl acetate/hexanes) to give the crude 4,4-dimethyl-6-(5-phenylpent-4-yn-1-yl)bicyclo[4.1.0]heptan-2ol ($0.64 \mathrm{~g}, 2.3 \mathrm{mmol}, 58 \%$). To the above crude ynol in 20 mL of acetone was added 2-iodoxybenzoic acid ($1.27 \mathrm{~g}, 4.54 \mathrm{mmol}$). The reaction mixture was heated at reflux for 3 h . The solvent was concentrated under reduced pressure and purified via flash chromatography (silica gel, 10% ethyl acetate/hexanes) to give 12d.

Data for (\pm)-(1S,6R)-4,4-dimethyl-6-(5-phenylpent-4-yn-1-yl)-bicyclo[4.1.0]heptan-2-one (12d): yield 0.38 g ($1.35 \mathrm{mmol}, 60 \%$); pale yellow oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3064,2957,2868,2203,1686,1599$, 1443, 1282, 1253, 758, 693, $525 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.36-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.28(\mathrm{~m}, 3 \mathrm{H}), 2.40-2.43(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2$ H), 2.02-2.06 (d, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.83(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.67-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.19-$ $1.23(\mathrm{dd}, J=9.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.01-1.03(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~s}$, $3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.0,131.5$, 128.2, 127.6, 123.8, 89.5, 81.1, 48.7, 42.4, 39.9, 37.0, 32.7, 30.8, 29.3, 26.5, 26.3, 26.0, 19.3; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{e} 303.1723$, calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{ONa} 303.1725$.

Data for (\pm)-(1S,6R)-4,4-dimethyl-6-(5-p-tolylpent-4-yn-1-yl)-bicyclo[4.1.0]heptan-2-one (12e): yield 0.14 g ($0.48 \mathrm{mmol}, 72 \%$) from the corresponding bicyclic ynol ($0.22 \mathrm{~g}, 0.75 \mathrm{mmol}$); yellow oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3028,2954,2868,2214,1689,1510,1458,1282,818$, $526 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2$ $\mathrm{H}), 7.07-7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.42(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.02-2.06(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.83(\mathrm{~d}, J=14.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.66-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.41(\mathrm{~m}, 1$ H), $1.19-1.22(\mathrm{dd}, J=9.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.00-1.02(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1$ $\mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $210.0,137.5,131.3,128.9,120.6,88.6,81.1,48.7,42.3,39.8,37.0,32.7$, 30.8, 29.3, 26.5, 26.3, 26.0, 21.3, 19.3; HRMS (ESI) m/e 317.1888, calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+} 317.1881$.

Data for 6-(5-(4-methoxyphenyl)pent-4-yn-1-yl)-4,4-dimethylbicyclo[4.1.0]heptan-2-one (12f): yield $1.01 \mathrm{~g}(3.25 \mathrm{mmol}$, 91%) from the corresponding bicyclic ynol $(1.12 \mathrm{~g}, 3.59 \mathrm{mmol})$; yellow oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3000,2953,2867,2049,1688,1607,1509$, $1289,1247,1173,1034,833,536 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 7.30-7.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.80-6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}), 2.37-2.41(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-2.06(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1$ H), $1.79-1.83(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.61$ $(\mathrm{m}, 2 \mathrm{H}), 1.34-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.23(\mathrm{dd}, J=9.7,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.01-1.03(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.0,159.0,132.7,115.8,113.7,87.8,80.8$, 55.1, 48.7, 42.2, 39.8, 37.0, 32.6, 30.8, 29.3, 26.4, 26.3, 26.0, 19.3; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+} m / e$ 333.1822, calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Na}$ 333.1831.

General Procedure III for Formation of Spiro[4.6]undecan-8ones 13. To a stirred solution of $12 \mathrm{a}(0.13 \mathrm{~g}, 0.5 \mathrm{mmol})$ in DBE (5 mL) was added $\mathrm{FeCl}_{3}(0.12 \mathrm{~g}, 0.75 \mathrm{mmol})$, and the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 1 h . The solvent was concentrated under reduced pressure, and the crude mixture was poured into water $(30 \mathrm{~mL})$ and extracted with ether $(30 \mathrm{~mL} \times 3)$. The combined organic layer was washed with brine, dried over MgSO_{4}, filtered through a bed of Celite, and concentrated to give the crude mixture.
(E)-1-(Chlorophenylmethylene)spiro[4.6]undecan-8-one (13a). The crude mixture from general procedure III (12a, $0.14 \mathrm{~g}, 0.50$ mmol) was purified by flash column chromatography (silica gel, 3% ethyl acetate/hexanes) to give $13 \mathrm{a}(0.078 \mathrm{~g}, 0.25 \mathrm{mmol}, 50 \%)$ as a colorless solid: $\mathrm{mp} 85-87{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3057,2949,2868,1704$, $1454,1444,1342,881,834,771,732,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.26-7.35(\mathrm{~m}, 5 \mathrm{H}), 2.70-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.43(\mathrm{~m}, 1$ H), 2.27-2.32 (dd, 12.0, 6.0 Hz, 1H), 2.17-2.23 (m, 1 H), 2.05-2.12 $(\mathrm{m}, 1 \mathrm{H}), 1.60-1.72(\mathrm{~m}, 7 \mathrm{H}), 1.42-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.37(\mathrm{~m}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.3,149.7,139.5,129.6,128.4$, 128.1, 124.8, 50.6, 43.6, 39.7, 39.1, 36.2, 35.2, 32.9, 21.2, 20.7; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+} m / e=311.1185$, calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{OClNa}$ 311.1179. Crystals suitable for X -ray diffraction analysis were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
(E)-1-(Chloro-p-tolylmethylene)spiro[4.6]undecan-8-one (13b). The crude mixture from general procedure III (12b, $0.15 \mathrm{~g}, 0.50$ mmol) was purified by flash column chromatography (silica gel, 3% ethyl acetate/hexanes) to give $\mathbf{1 3 b}(0.075 \mathrm{~g}, 0.23 \mathrm{mmol}, 46 \%)$ as a pale yellow oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3026,2947,2869,1702,1607,1453,885,810$, $744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13-7.19(\mathrm{~m}, 4 \mathrm{H}), 2.68-$ $2.70(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.41(\mathrm{~m}, 5 \mathrm{H}), 2.09-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.74$ $(\mathrm{m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.5,149.6,138.3,136.7$, 129.5, 128.9, 125.1, 50.6, 43.6, 39.8, 39.0, 36.2, 35.3, 32.8, 21.3, 21.2, 20.8; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+} m / e ~ 325.1332$, calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{OClNa}$ 325.1335.
(E)-1-(Chloro(3-methoxyphenyl)methylene)spiro[4.6]undecan-8one (13c). The crude mixture from general procedure III (12c, 0.15 g , 0.50 mmol) was purified by flash column chromatography (silica gel, 3% ethyl acetate/hexanes) to give $13 \mathrm{c}(0.077 \mathrm{~g}, 0.23 \mathrm{mmol}, 45 \%)$ as a colorless solid: mp $137-140^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3026,2950,2863,1700$, 1593, 1457, 1317, 1262, 1165, 1042, 784, $742 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.84$ $(\mathrm{m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.42(\mathrm{~m}, 2 \mathrm{H})$, $2.10-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.75(\mathrm{~m}, 6 \mathrm{H}), 1.37-1.59(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.4,159.2,149.6,140.7,129.2,124.5$, 122.0, 115.4, 113.8, 55.3, 50.7, 43.6, 39.8, 39.0, 36.2, 35.2, 32.7, 21.2, 20.8; HRMS (EI) $[\mathrm{M}+\mathrm{Na}]^{+} m / e ~ 341.1293$, calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{ClNa}$ 341.1284. Crystals suitable for X-ray diffraction analysis were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes.
(E)-1-(Chlorophenylmethylene)-10,10-dimethylspiro[4.6]-undecan-8-one (13d). The crude mixture from general procedure III ($\mathbf{1 2 d}, 0.15 \mathrm{~g}, 0.50 \mathrm{mmol}$) was purified by flash column chromatography (silica gel, 3% ethyl acetate/hexanes) to give 13d $(0.098 \mathrm{~g}, 0.31 \mathrm{mmol}, 62 \%)$ as a pale yellow oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3048$, 2958, 1698, 1594, 1450, 1238, 734, $702 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.33-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.69(\mathrm{~m}, 2$ H), $2.24-2.38(\mathrm{~m}, 3 \mathrm{H}), 1.96-2.21(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.76$ (m, 6 H$), 1.45(\mathrm{~s}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.6,150.7,139.7,129.6,128.3,128.1,124.5,54.9$, 51.9, 51.1, 40.2, 37.3, 35.8, 34.6, 33.7, 32.3, 26.6, 21.6; HRMS (EI) $[\mathrm{M}]^{+} m / e ~ 316.1591$, calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{OCl} 316.1594$.
(E)-1-(Chloro-p-tolylmethylene)-10,10-dimethylspiro[4.6]-undecan-8-one (13e). The crude mixture from general procedure III
$(\mathbf{1 2 e}, 0.16 \mathrm{~g}, 0.5 \mathrm{mmol})$ was purified by flash column chromatography (silica gel, 2% ethyl acetate $/$ hexanes) to give $13 \mathrm{f}(0.10 \mathrm{~g}, 0.29 \mathrm{mmol}$, $55 \%)$ as a pale yellow oil: $\operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3026,2957,1701,1606,1458$, 1237, 816, 783, 748, $526 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15-$ $7.20(\mathrm{~m}, 4 \mathrm{H}), 2.63-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.40(\mathrm{~m}, 6 \mathrm{H}), 1.97-2.00$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.78(\mathrm{~m}, 6 \mathrm{H}), 1.51-1.54(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.45-1.48(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.9,150.6,138.2,136.9,129.6,128.8$, 124.8, 55.0, 51.8, 51.2, 40.3, 37.4, 36.0, 34.7, 33.8, 32.5, 26.7, 21.7, 21.3; HRMS (EI) $[\mathrm{M}]^{+} m / e ~ 330.1748$, calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{OCl} 330.1750$.
(E)-1-(Chloro(3-methoxyphenyl)methylene)-10,10-dimethylspiro-[4.6]undecan-8-one (13f). The crude mixture from general procedure III ($12 \mathrm{f}, 0.16 \mathrm{~g}, 0.5 \mathrm{mmol}$) was purified by flash column chromatography (silica gel, 2% ethyl acetate/hexanes) to give 13 f $(0.10 \mathrm{~g}, 0.29 \mathrm{mmol}, 55 \%)$ as a white solid: $\mathrm{mp} 119-120{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3055,2955,1701,1596,1457,1428,1286,1261,1043,782$, $748,700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.29(\mathrm{~m}, 1 \mathrm{H})$, $6.87-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.67(\mathrm{~m}, 2 \mathrm{H})$, $2.38-2.41(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.34(\mathrm{dd}, J=12.2,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.21-2.28(\mathrm{dt}, J=18.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-2.00(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.61-1.79(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.57(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.49(\mathrm{~d}, J$ $=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 212.6,159.1,150.5,140.7,129.0,124.1,122.0,115.2,114.0$, $55.2,54.8,51.7,51.1,40.2,37.2,35.9,34.5,34.5,33.7,32.2,26.5,21.5$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+} m / e 369.1595$, calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{ClNa}$ 369.1597.

General Procedure IV for Synthesis of Starting Compounds 14a-f. To a stirred solution of N-((3-hydroxycyclohex-1-en-1-yl)methyl)-4-methyl- N -(3-phenylprop-2-yn-1-yl)benzenesulf-onamide $(1.05 \mathrm{~g}, 2.65 \mathrm{mmol})$ in 5.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.032 \mathrm{~g}(0.27$ mmol) of (dimethylamino)pyridine, $0.60 \mathrm{~g}(3.98 \mathrm{mmol})$ of tertbutyldimethylsilyl chloride, and $1.18 \mathrm{~g}(2.31 \mathrm{mmol})$ of triethylamine. The reaction mixture was stirred at $30{ }^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was added to 10 mL of water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 $\times 3 \mathrm{~mL}$). The combined organic layer was washed with brine, dried over MgSO_{4}, filtered through a bed of Celite, and concentrated to give the crude mixture.

N-((3-((tert-Butyldimethylsilyl)oxy)cyclohex-1-en-1-yl)methyl)-4-methyl-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (14a). The crude mixture was purified by flash column chromatography (silica gel, 10% ethyl acetate/hexanes) to give $\mathbf{1 4 a}(1.33 \mathrm{~g}, 2.60 \mathrm{mmol}, 98 \%)$ as a white solid: mp $66-67{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3057,2930,1598,1491$, 1349, 1163, 1092, $661 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76$ (d, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{~s}, 1$ H), $4.30(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1$ H), $3.82(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3$ $\mathrm{H}), 2.08-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 2 \mathrm{H})$, $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07-0.03(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 143.3, 136.0, 134.0, 131.4, 131.1, 129.4, 129.3, 128.2, 128.0, 127.7, 122.2, 85.6, 81.6, 66.7, 52.4, 36.3, 32.2, 25.9, 25.8, 21.3, 19.4, 18.1, -4.7; HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z} 532.2325, \mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{SSiNa}[\mathrm{M}+\mathrm{Na}]^{+}$ calcd 532.2318.

N-((3-((tert-Butyldimethylsilyl)oxy)cyclohex-1-en-1-yl)methyl)-4-methyl-N-(3-p-tolylprop-2-yn-1-yl)benzenesulfonamide (14b). The crude mixture was purified by flash column chromatography (silica gel, 10% ethyl acetate/hexanes) to give $\mathbf{1 4 b}(0.52 \mathrm{~g}, 0.96 \mathrm{mmol}, 66 \%)$ from the corresponding enol $(0.60 \mathrm{~g}, 1.45 \mathrm{mmol})$ as a yellow oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2929, 2857, 1661, 1447, 1349, 1163, 1092, $671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.66(\mathrm{~s}, 1$ H), $4.29(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{br}$ s, 1 H$), 4.15(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1$ H), $3.81(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3$ H), $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.46$ (m, 2 H), $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07-0.03(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.2,138.4,136.0,134.1,131.3,131.1,129.4,128.8,127.7$, 119.1, 85.8, 80.9, 66.7, 52.4, 36.4, 32.3, 25.9, 25.8, 21.3, 19.5, 18.1, -4.6, -4.7; HRMS (ESI ${ }^{+}$m/e 546.2477, $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{SSiNa}[\mathrm{M}+$ $\mathrm{Na}]^{+}$calcd 546.2474.

N-(3-(4-Bromophenyl)prop-2-yn-1-yl)-N-((3-((tert-butyldimethylsilyl)oxy)cyclohex-1-en-1-yl)methyl)-4-methylbenze-
nesulfonamide (14c). The crude mixture was purified by flash column chromatography (silica gel, 10% ethyl acetate/hexanes) to give 14c ($0.31 \mathrm{~g}, 0.50 \mathrm{mmol}, 32 \%$) from the corresponding enol ($0.74 \mathrm{~g}, 1.56$ $\mathrm{mmol})$ as a colorless oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2930, 2857, 1634, 1486, 1351, 1255, 1164, 1071, $755 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.9-$ $6.88(\mathrm{~m}, 2 \mathrm{H}), 5.63(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{br} \mathrm{s}, 1$ H) $4.14(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 2 \mathrm{H})$, $1.59-1.45(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.3,136.0,134.0,132.8,131.3,129.4$, 127.8, 122.5, 121.1, 84.5, 83.0, 66.7, 52.5, 36.3, 32.2, 25.9, 25.8, 21.4, 19.5, 18.1, -4.6, -4.7; HRMS (ESI $\left.{ }^{+}\right) m / z$ 610.1430, $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{BrNO}_{3} \mathrm{SSiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 610.1423.

N-((3-((tert-Butyldimethylsilyl)oxy)-5,5-dimethylcyclohex-1-en-1-yl)methyl)-4-methyl-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (14d). The crude mixture was purified by flash column chromatography (silica gel, 10% ethyl acetate/hexanes) to give $14 \mathrm{~d}(0.93 \mathrm{~g}, 1.66 \mathrm{mmol}, 75 \%)$ from the corresponding enol (0.94 g , 2.21 mmol) as a white solid: $\mathrm{mp} 99-100^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2954,2929$, 1459, 1351, 1165, 1071, $661 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2$ H), $5.64(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.11(\mathrm{~d}$, $J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1$ H), $2.32(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.34$ $(\mathrm{m}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.3,136.0,132.2,131.4,131.4,130.2$, 129.4, 129.4, 128.2, 128.0, 127.7, 122.1, 85.8, 81.3, 66.9, 52.4, 45.1, 39.6, 36.2, 31.0, 30.8, 26.3, 25.8, 21.3, 18.1, -4.6, -4.8; HRMS (ESI ${ }^{+}$) $m / e 560.2632, \mathrm{C}_{31} \mathrm{H}_{43} \mathrm{NO}_{3} \mathrm{SSiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 560.2631.

N-((3-((tert-Butyldimethylsilyl)oxy)-5,5-dimethylcyclohex-1-en-1-yl)methyl)-4-methyl-N-(3-p-tolylprop-2-yn-1-yl)benzenesulfonamide (14e). The crude mixture was purified by flash column chromatography (silica gel, 10% ethyl acetate/hexanes) to give $14 \mathrm{e}(0.94 \mathrm{~g}, 1.63 \mathrm{mmol}, 71 \%)$ from the corresponding enol (1.00 g , $2.30 \mathrm{mmol})$ as a yellow oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2952,1669,1510,1348$, 1093, 905, $671 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~d}, J=18.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ $(\mathrm{s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.60(\mathrm{~m}, 1 \mathrm{H})$, $1.36-1.31(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}$, $6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.1, 138.2, 135.8, 132.1, 131.2, 130.0, 129.3, 128.6, 127.6, 119.0, 85.8, 80.5, 66.8, 52.1, 45.0, 39.5, 36.2, 30.9, 30.7, 26.3, 25.7, 21.2, 18.0, - 4.7, -4.8; HRMS (ESI ${ }^{+}$) $m / e 574.2783, \mathrm{C}_{32} \mathrm{H}_{45} \mathrm{NO}_{3} \mathrm{SSiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 574.2787.

N-(3-(4-Bromophenyl)prop-2-yn-1-yl)-N-((3-((tert-butyldimethylsilyl)oxy)-5,5-dimethylcyclohex-1-en-1-yl)methyl)-4methylbenzenesulfonamide (14f). The crude mixture was purified by flash column chromatography (silica gel, 10% ethyl acetate/hexanes) to give $14 \mathrm{f}(0.32 \mathrm{~g}, 0.50 \mathrm{mmol}, 17 \%)$ from the corresponding enol $(1.51 \mathrm{~g}, 3.00 \mathrm{mmol})$ as a yellow solid: $\mathrm{mp} 84-85{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2956, 1665, 1486, 1347, 1162, 905, $662 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23$ $(\mathrm{m}, 2 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.29(\mathrm{~m}, 2 \mathrm{H})$, $4.10(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.63(\mathrm{~m}, 1 \mathrm{H})$, $1.38-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 143.3, 135.8, 132.8, 132.2, $131.3,130.3,129.4,127.8,122.5,121.1,84.6,82.7,66.9,52.4,45.1$, 39.6, 36.2, 31.0, 30.8, 26.4, 25.8, 21.3, 18.1, -4.6, -4.8; HRMS (ESI ${ }^{+}$) $m / e ~ 638.1735, \mathrm{C}_{31} \mathrm{H}_{42} \mathrm{BrNO}_{3} \mathrm{SSiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 638.1736 .

N-((3-((tert-Butyldimethylsilyl)oxy)-5,5-dimethylcyclohex-1-en-1-yl)methyl)-N-(3-(3-methoxyphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide $\mathbf{(1 4 g})$. The crude mixture was purified by flash column chromatography (silica gel, 10% ethyl acetate/hexanes) to give $\mathbf{1 4 g}$ ($0.73 \mathrm{~g}, 1.23 \mathrm{mmol}, 71 \%$) from the corresponding enol ($0.78 \mathrm{~g}, 1.73$ $\mathrm{mmol})$ as a white solid: $\mathrm{mp} 90-9{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2952,1424,1164$, 1071, $877 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2$ H), $7.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.83(\mathrm{~m}$, $1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.58(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{~m}, 1 \mathrm{H})$,
4.39-4.31 (m, 2 H), $4.12(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1$ H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.89$ $(\mathrm{m}, 2 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.91$ $(\mathrm{s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.1,143.5,135.9,132.3,130.2,129.5,129.1,127.8,124.0,123.2$, $116.9,114.3,85.7,81.3,66.9,55.2,52.3,45.2,39.6,36.2,31.0,30.9$, 26.4, 25.8, 21.3, 18.1, $-4.6,-4.7$; HRMS (ESI) $m / e ~ 590.2740$, $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{NO}_{4} \mathrm{SSiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 590.2736.
N-(3-([1, 1'-Biphenyl]-4-yl)prop-2-yn-1-yl)-N-((3-((tert-butyldimethylsilyl)oxy)-5,5-dimethylcyclohex-1-en-1-yl)methyl)-4methylbenzenesulfonamide (14h). The crude mixture was purified by flash column chromatography (silica gel, 10% ethyl acetate/ hexanes) to give $14 \mathrm{~h}(0.72 \mathrm{~g}, 1.14 \mathrm{mmol}, 71 \%)$ from the corresponding enol $(0.80 \mathrm{~g}, 1.60 \mathrm{mmol})$ as a white oil: $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2953, 2928, 1486, 1349, 1162, 1071, $840 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.66(\mathrm{~m}, 1 \mathrm{H}), 4.37$ $(\mathrm{d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.86(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, $1.95-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.02$ $(\mathrm{s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.3,141.1,140.0,135.8,132.3,131.8,130.2,129.4$, $128.8,127.8,127.7,126.9,126.6,121.0,85.6,82.0,66.9,52.3,45.1$, 39.5, 36.3, 31.0, 30.9, 26.3, 25.8, 21.4, 18.1, -4.6, -4.7; HRMS (ESI ${ }^{+}$) $m / e ~ 636.2942, \mathrm{C}_{37} \mathrm{H}_{47} \mathrm{NO}_{3} \mathrm{SSiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 636.2944.

N-((3-((tert-Butyldimethylsilyl)oxy)cyclohex-1-en-1-yl)methyl)-N-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (14i). The crude mixture was purified by flash column chromatography (silica gel, 10% ethyl acetate/hexanes) to give $14 i(0.95 \mathrm{~g}, 1.70 \mathrm{mmol}$, $95 \%)$ from the corresponding enol $(0.76 \mathrm{~g}, 1.79 \mathrm{mmol})$ as a yellow oil: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2931,2858,1607,1463,1350,1250,1163,1075,755$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2$ H), $5.65(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.14(\mathrm{~d}$, $J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.68(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.53(\mathrm{~m}, 2 \mathrm{H})$, $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6$, 143.2, 136.2, 134.2, 132.9, 131.1, 129.4, 127.8, 114.2, 113.7, 85.6, 80.2, 66.8, 55.3, 52.4, 36.5, 32.3, 26.0, 25.9, 21.4, 19.6, 18.2, -4.6; HRMS $\left(\mathrm{ESI}^{+}\right) m / e 562.2428, \mathrm{C}_{30} \mathrm{H}_{41} \mathrm{NO}_{4} \mathrm{SSiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 562.2423.

General Procedure V for Formation of Compounds 15a-f and 16. To a dried DCE solution $(5.0 \mathrm{~mL})$ of compound $\mathbf{1 4 a}(0.27 \mathrm{~g}$, $0.50 \mathrm{mmol})$ were added $\mathrm{Et}_{2} \mathrm{Zn}(0.66 \mathrm{~mL}, 1.0 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{I}_{2}(0.54$ $\mathrm{g}, 2.0 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under 1 atm of nitrogen for 1 h . The resulting mixture was then stirred at $50^{\circ} \mathrm{C}$ until no starting compound 14a was detected on TLC (ca. 9-12 h). The reaction mixture was added to 10 mL of water and extracted with diethyl ether $(10 \times 3 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over MgSO_{4}, filtered through a bed of Celite, and concentrated to give the crude mixture.
(Z)-4-(lodophenylmethylene)-2-tosyl-2-azaspiro[4.6]undec-7-ene (15a). The crude mixture from general procedure V (14a, $0.27 \mathrm{~g}, 0.50$ mmol) was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give $15 \mathrm{a}(0.12 \mathrm{~g}, 0.22 \mathrm{mmol}, 43 \%$) as a colorless solid: mp $101-102{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2922,2841,1638,1347$, $1159 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.38(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.17(\mathrm{~m}, 5 \mathrm{H}), 5.74(\mathrm{~m}, 1 \mathrm{H}), 5.47-$ $5.45(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.28(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$, 2.03-1.83 (m, 4 H$), 1.71-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.19-$ $1.13(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.0,143.7,143.4$, 133.9, 132.3, 129.7, 128.2, 128.0, 127.9, 127.4, 92.4, 61.5, 57.5, 50.0, 39.7, 36.1, 28.2, 22.6, 21.6; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{INO}_{2} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+} 542.0627$, found 542.0632. Crystals suitable for X-ray diffraction analysis were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes.
(Z)-4-(lodo-p-tolylmethylene)-2-tosyl-2-azaspiro[4.6]undec-7ene (15b). The crude mixture from general procedure $\mathrm{V}(\mathbf{1 4 b}, 0.27 \mathrm{~g}$, 0.50 mmol) was purified by flash column chromatography (silica gel,
5% ethyl acetate/hexanes) to give $\mathbf{1 5 b}(0.12 \mathrm{~g}, 0.23 \mathrm{mmol}, 46 \%)$ as a yellow solid: $\mathrm{mp} 163-164{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2915,1640,1349,1160$ cm^{-1}; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 4 \mathrm{H}), 5.77-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.47(\mathrm{~m}$, $1 \mathrm{H}), 3.98(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J$ $=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, $2.05-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.85(\mathrm{~m}, 1 \mathrm{H})$, $1.75-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{q}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.0,143.7,143.4,133.9,132.3$, 129.7, 128.2, 128.0, 127.9, 127.4, 92.4, 61.5, 57.5, 50.0, 39.7, 36.1, 28.2, 22.6, 21.6; HRMS (ESI) m / e 534.0966, $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{INO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$calcd 534.0964.
(Z)-4-((4-Bromophenyl)iodomethylene)-2-tosyl-2-azaspiro[4.6]-undec-7-ene (15c). The crude mixture from general procedure V $(14 c, 0.31 \mathrm{~g}, 0.50 \mathrm{mmol})$ was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give $15 \mathrm{c}(0.17 \mathrm{~g}, 0.28$ mmol, 56%) as a white solid: $\mathrm{mp} 212-214{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2934$, 1482, 1346, 1158, $1092 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.78-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.48-5.46(\mathrm{~m}, 1 \mathrm{H})$, $3.96(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 1 \mathrm{H})$, $1.96-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.45-$ $1.34(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.15(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 152.1, 143.8, 142.4, 134.1, 132.3, 131.4.129.9, 129.8, 128.0, 127.2, 122.3, $90.5,61.6,57.5,50.2,39.9,36.3,28.3,22.7,21.6$; HRMS (FAB ${ }^{+}$) $\mathrm{m} / \mathrm{e} 597.9902, \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{BrINO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$calcd 597.9912.
(Z)-4-(lodophenylmethylene)-10,10-dimethyl-2-tosyl-2-azaspiro-[4.6]undec-7-ene (15d). The crude mixture from general procedure V ($\mathbf{1 4 d}, 0.28 \mathrm{~g}, \quad 0.50 \mathrm{mmol}$) was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give 15 d ($0.21 \mathrm{~g}, 0.37 \mathrm{mmol}, 73 \%$) as a white solid: $\mathrm{mp} 124-126^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2952,1635,1347,1162 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}$, $3 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.71-5.59(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~d}, J=15.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.68(\mathrm{~m}, 2$ $\mathrm{H}), 1.37(\mathrm{~s}, 2 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}), 0.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 151.0,143.8,143.7,132.3,132.2,129.7,128.5,128.2,128.0$, 92.8, 61.1, 58.8, 51.6, 51.1, 40.0, 35.3, 34.6, 33.3, 26.4, 21.6; HRMS $\left(\mathrm{ESI}^{+}\right) m / e 570.0946, \mathrm{C}_{26} \mathrm{H}_{30} \mathrm{INO}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 570.0940.
(Z)-4-(lodo-p-tolylmethylene)-10,10-dimethyl-2-tosyl-2-azaspiro-[4.6]undec-7-ene (15e). The crude mixture from general procedure V ($14 \mathrm{e}, 0.29 \mathrm{~g}, 0.50 \mathrm{mmol}$) was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give $15 \mathbf{e}(0.14 \mathrm{~g}, 0.24$ mmol, 48%) as a white solid: mp $157-158{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2949$, 1349, 1160, $1093 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.71-5.59(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.75(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.66$ $(\mathrm{m}, 2 \mathrm{H}), 1.44(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.81$ $(\mathrm{s}, 3 \mathrm{H}), 0.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.9,143.7$, 141.0, 138.2, 132.3, 129.8, 128.7, 128.6, 128.1, 128.0, 93.3, 61.2, 58.8, 51.6, 51.1, 40.1, 35.4, 34.7, 33.4, 26.5, 21.6, 21.3; HRMS (ESI ${ }^{+}$) m/e 562.1286, $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{INO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$calcd 562.1277.
(Z)-4-((4-Bromophenyl)iodomethylene)-10,10-dimethyl-2-tosyl-2-azaspiro[4.6]undec-7-ene (15f). The crude mixture from general procedure V $(14 f, 0.32 \mathrm{~g}, 0.50 \mathrm{mmol})$ was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give $\mathbf{1 5 f}$ ($0.18 \mathrm{~g}, 0.29 \mathrm{mmol}, 57 \%$) as a yellow solid: mp $176-178{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2923, 1598, 1348, 1159, $1012 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.75-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.67-$ $5.62(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.46(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.10$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.39(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.1,143.9,142.7,132.5,131.3,130.0,129.9,128.3$, 128.0, 128.0, 122.3, 90.9, 61.2, 58.7, 51.9, 51.3, 40.1, 35.5, 34.7, 33.5,
26.4, 21.6; $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) m / e$ 626.0217, $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{BrINO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ calcd 626.0225.
(Z)-4-(lodo(3-methoxyphenyl)methylene)-10,10-dimethyl-2-tosyl-2-azaspiro[4.6]undec-7-ene (15g). The crude mixture from general procedure $\mathrm{V}(\mathbf{1 4 g}, 0.30 \mathrm{~g}, 0.50 \mathrm{mmol})$ was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give $15 \mathrm{~g}(0.17 \mathrm{~g}, 0.30 \mathrm{mmol}, 59 \%)$ as a yellow solid: $\mathrm{mp} 157-158^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2952, 1595, 1348, 1160, $1093 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 5.69-5.62(\mathrm{~m}, 2$ H), $3.98(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.46(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 2 \mathrm{H})$, $1.76-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1$ $\mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $158.9,150.9,144.7,143.8,132.3,132.2,129.7,129.0,128.5,128.0$, 120.7, 92.4, 61.0, 58.8, 55.3, 51.6, 51.1, 40.0, 35.2, 34.6, 33.3, 26.4, 21.6; HRMS (ESI ${ }^{+}$m/e 578.1230, $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{INO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$calcd 578.1226.
(Z)-4-([1,1'-Biphenyl]-4-yliodomethylene)-10,10-dimethyl-2-tosyl-2-azaspiro[4.6]undec-7-ene (15h). The crude mixture from general procedure $\mathrm{V}(14 \mathrm{~h}, 0.32 \mathrm{~g}, 0.50 \mathrm{mmol})$ was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give $15 \mathrm{~h}(0.15 \mathrm{~g}, 0.24 \mathrm{mmol}, 47 \%)$ as a white solid: $\mathrm{mp} 201-202{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2937,1348,1160,1086 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 5.69-5.63(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ $(\mathrm{s}, 3 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~d}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.4,143.8,142.7,141.1,140.2,132.4$, 132.3, 129.8, 128.9, 128.8, 128.5, 128.1, 127.7, 127.1, 126.7, 92.5, 61.2, 58.9, 51.8, 51.2, 40.1, 35.5, 34.7, 33.4, 26.4, 21.6; HRMS (ESI ${ }^{+}$) m/e 624.1431, $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{INO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$calcd 624.1433 .
(\pm)-(1S, $7 \mathrm{~S}, 8 R$)-8-Iodo-6-(4-methoxyphenyl)-3-tosyl-3-azatricyclo[5.4.1.0 ${ }^{1,5}$]dodec-5-ene (16). The crude mixture from general procedure $\mathrm{V}(\mathbf{1 4 i}, 0.27 \mathrm{~g}, 0.50 \mathrm{mmol})$ was purified by flash column chromatography (silica gel, 5% ethyl acetate/hexanes) to give 16 (0.09 g, $0.16 \mathrm{mmol}, 31 \%$) as a white solid: $\mathrm{mp} 196-198{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2915, 1513, 1336, 1247, $1098 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.49-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, $2.34(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 1 \mathrm{H})$, $1.89-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.38(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,143.5,141.3,134.5,134.1,129.8$ 128.5, 127.4, 125.4, 114.5, 60.7, 59.0, 58.4, 55.4, 46.3, 38.2, 36.5, 36.3, 35.5, 24.9, 21.5; HRMS (ESI $\left.{ }^{+}\right) m / e 550.0905, \mathrm{C}_{25} \mathrm{H}_{29} \mathrm{INO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ calcd 550.0913.

ASSOCIATED CONTENT

(s) Supporting Information

NMR spectra for compounds 1a-j, 2a-d, 2f-h, 3, 4, 7, 12a-f, $13 a-f, 14 a-i, 15 a, b, d-h$, and 16 and X-ray structure data and crystallographic information files for compounds $2 \mathbf{a}, \mathbf{c}-\mathbf{e}, \mathbf{g}, 3,4$, 7, 13a,c, 15a, and 16. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: cheyeh@ntnu.edu.tw.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work has been supported by the National Science Council (Grants NSC 98-2119-M-003-004-MY3 and NSC 98-2119-M-003-001-MY2) and National Taiwan Normal University.

REFERENCES

(1) (a) Fujimoto, R. A.; Boxer, J.; Jackson, R. H.; Simke, J. P.; Neale, R. F.; Snowhill, E. W.; Barbaz, B. J.; Williams, M.; Sills, M. A. J. Med. Chem. 1989, 32, 1259. (b) Agosti, A.; Britto, S.; Renaud, P. Org. Lett. 2008, 10, 1417. (c) Yang, L.; Morriello, G.; Prendergast, K.; Cheng, K.; Jacks, T.; Chan, W. S.; Schleim, K. D.; Smith, R. G.; Patchett, A. A. Bioorg. Med. Chem. Lett. 1998, 8, 107. (d) Ma, Z.; Chu, D. T. W.; Cooper, C. S.; Li, Q.; Fung, A. K. L.; Wang, S.; Shen, L. L.; Flamm, R. K.; Nilius, A. M.; Alder, J. D.; Meulbroek, J. A.; Or, Y. S. J. Med. Chem. 1999, 42, 4202. (e) Makovec, F.; Peris, W.; Revel, L.; Giovanetti, R.; Mennuni, L.; Rovati, L. C. J. Med. Chem. 1992, 35, 28. (f) Dake, G. Tetrahedron 2006, 62, 3467. (g) Li, M; Dixon, D. J. Org. Lett. 2010, 12, 3784.
(2) (a) Suga, S.; Watanabe, M.; Yoshida, J. I. J. Am. Chem. Soc. 2002, 124, 14824. (b) Bittermann, H.; Böckler, F.; Einsiedel, J.; Gmeiner, P. Chem.-Eur. J. 2006, 12, 6315. (c) Wright, D. L.; Schutle, J. P., II; Page, M. A. Org. Lett. 2000, 2, 1847. (d) Kersten, L.; Taylor, R. H.; Felpin, F. X. Tetrahedron. lett. 2009, 50, 506.
(3) Shibata, T.; Tahara, Y. K.; Tamura, K.; Endo, K. J. Am. Chem. Soc. 2008, 130, 3451.
(4) Cossy, J.; Bouzide, A. Tetrahedron 1997, 53, 5775.
(5) Harrison, T. J.; Patrick, B. O.; Dake, G. R. Org. Lett. 2007, 9, 367.
(6) (a) Hatano, M.; Mikami, K. J. Am. Chem. Soc. 2003, 125, 4704.
(b) Hatano, M.; Mikami, K. Org. Biomol. Chem. 2003, 1, 3871.
(7) Sanchez Duque, M. M.; Baslé, O.; Isambert, N.; Gaudel-Siri, A.; Génisson, Y.; Plaquevent, J. C.; Rodriguez, J.; Constantieux, T. Org. Lett. 2011, 13, 3269.
(8) Staben, S. T.; Kennedy-Smith, J. J.; Huang, D.; Corkey, B. K.; Lalonde, R. L.; Toste, F. D. Angew. Chem., Int. Ed. 2006, 45, 5991.
(9) Zhou, C. Y.; Che, C. M. J. Am. Chem. Soc. 2007, 129, 5828.
(10) (a) Lin, M. N.; Wu, S. H.; Yeh, M. C. P. Adv. Synth. Catal. 2011, 353, 3290-3294. (b) Yeh, M. C.; Fang, C. W.; Lin, H. H. Org. Lett. 2012, 14, 1830.
(11) (a) Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron Lett. 1966, 7, 3353. (b) Denmark, S. E.; O'Connor, S. P. J. Org. Chem. 1997, 62, 584. (c) Charette, A. B.; Marcoux, J.-F. Synlett 1995, 1197. (d) Wipf, P.; Kendall, C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2003, 125, 761.
(12) The structure elucidation of the compound was achieved by Xray crystallography.
(13) Olah, G. A.; Reddy, V. P.; Prakash, G. K. S. Chem. Rev. 1992, 92, 69.
(14) Marshall, J. A.; Ellison, R. H. J. Am. Chem. Soc. 1976, 98, 4312.
(15) Tenaglia, A.; Gaillard, S. Angew. Chem., Int. Ed. 2008, 47, 2454.
(16) Yeh, M. C. P.; Pai, H. F.; Hsiow, C. Y.; Wang, Y. R Organometallics 2010, 29, 160.

[^0]: Received: August 24, 2012
 Published: October 17, 2012

