Diastereoselective Synthesis of Fluorine-Containing Pyrrolizidines via Triphenylcarbenium Tetrafluoroborate-Promoted Carbofluorination of N -3-Arylpropargylpyrrolidine-Tethered Tertiary Allylic Alcohols

Ming-Chang P. Yeh,* Hsiao-Feng Chen, Yu-Ya Huang, and Yu-Ting Weng
Department of Chemistry, National Taiwan Normal University, 88 Ding-Jou Road, Section 4, Taipei 11677, Taiwan, Republic of China

(S) Supporting Information

Abstract

Inexpensive and air stable triphenylcarbenium tetrafluoroborate efficiently promoted the carbofluorination of N arylpropargylpyrrolidines bearing a tertiary allylic alcohol tether at the 2 -position of the pyrrolidine ring to provide 1 -isobutenyl-2-(fluoro(phenyl)methylenylhexahydro- 1 H -pyrrolizidines in a stereoselective fashion. When subjected to bis(trifluoromethane)sulfonamide, the same substrates underwent cycloisomerization reaction within minutes to generate 1-isobutenyl-2-benzoylhexahydro- 1 H -pyrrolizidines with excellent stereoselectivity.

INTRODUCTION

The pyrrolizidine ring skeleton is present in a large number of naturally occurring nacine bases, many of which possess notable biological and pharmaceutical properties. ${ }^{1}$ Many synthetic strategies have been developed for the construction of the pyrrolizidine ring scaffold including the intramolecular alkylation of N-chloroethylpyrrolidines with α, β-unsaturated esters, ${ }^{2}$ the N-alkylation of pyrrolidines with alkyltosylates, ${ }^{3}$ or alkylesters, ${ }^{4}$ the radical cyclization reaction of N-allylstannane-pyrrolidine-2,5-diones, ${ }^{5}$ the reaction of α-acylamino radicals with alkenyl tethers, ${ }^{6}$ the SmI_{2}-mediated intramolecular ring closure of alkyl bromides with ynamides, ${ }^{7}$ the $\mathrm{Pd}(\mathrm{II})$-catalyzed intramolecular 1,2-aminoalkylation of conjugated 1,3-dienes, ${ }^{8}$ the 1,3-dipolar cycloaddition of azomethane ylides with acrylates, ${ }^{9}$ the $[3+2]$-cycloadditions of cyclic nitrones with alkenes ${ }^{10}$ and the gold-catalyzed [3+2]-cycloaddition-enamine cyclization of iminoesters with acetylenes and dipolarophiles. ${ }^{11}$ Encouraged by the diverse biological activities of pyrrolizidine derivatives and to expand our recently developed Lewis acidpromoted carbohalogenation reactions of alkynes with allylic alcohols, ${ }^{12}$ we envisioned that N -3-arylpropargylpyrrolidine containing a tertiary allylic alcohol tether at the 2 -position of the pyrrolidine ring would be a good candidate for a Lewis acidassisted carbohalogenation reaction, which may lead to the formation of halogenated hexahydro- 1 H -pyrrolizidine derivatives. Herein, we report that triphenylcarbenium tetrafluoroborate $\left(\mathrm{Ph}_{3} \mathrm{CBF}_{4}\right)$ features both Lewis acid character and the nucleophilic fluoride source for the carbofluorination of N -3-
arylpropargylpyrrolidine-tethered tertiary allylic alcohols. It was suggested that anti-addition of a fluoride and the transient allylic carbonium ion, generated in situ from the reaction of tertiary allylic alcohols with the trityl cation, across the acetylene afforded the fluorinated pyrrolizidine derivatives in a stereoselective manner and in good yield. Furthermore, bis(trifluoromethane)sulfonamide ($\mathrm{Tf}_{2} \mathrm{NH}$) successfully performed the cycloisomerization reaction of the substrates in minutes, providing 1 -isobutenyl-2-aroylhexahydro- 1 H -pyrrolizine derivatives with excellent stereoselectivity.

RESULTS AND DISCUSSION

The synthetic route for the preparation of the starting substrate 1a is depicted in Scheme 1. Starting from commercial (\pm)-proline 2, an esterification and propargylation sequence, followed by reduction of the resulting ester group with LiAlH_{4} gave the corresponding alcohol 3 in 85% yield over the three steps. Following the Sonogashira protocol, ${ }^{13}$ coupling the terminal alkyne of 3 with phenyl iodide afforded the coupling product 4 in 75% isolated yield. Swern oxidation of 4 provided the aldehyde $5,{ }^{14}$ which was used for the next step without further purification. Next, a Wittig reaction employing 1-(triphenylphosphoranylidene)propan-2-one with $5,{ }^{15}$ followed by addition of the methyl Grignard reagent to the resulting

[^0]
Scheme 1. Synthesis of Starting Substrate 1a

ketone furnished the desired starting substrate 1a in 70\% yield over the last two steps.

Initially, various Lewis acids were screened for their ability to promote the carbochlorination of $\mathbf{1 a}$. Chlorine-containing Lewis acids, including $\mathrm{FeCl}_{3}, \mathrm{InCl}_{3}, \mathrm{SnCl}_{2}, \mathrm{AlCl}_{3}$, and TiCl_{4}, failed to assist the carbochlorination reaction with $1 \mathbf{1 a}$. Delightfully, the use of 2.0 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in 0.1 M of dichloromethane (DCM) with 1a completed the carbofluorination reaction in 10 min , generating 1 -isobutenyl-2-(fluoro-(phenyl)methylenylhexahydro-1H-pyrrolizidine (7a) in 46% yield together with the cycloisomerization product 1-isobutenyl-2-benzoyl-hexahydro-1 H -pyrrolizidine (8a) in 17% yield and a trace amount of the dehydration product 9 a (Table 1, entry 1). Importantly, both compounds 7 a and 8a were isolated as the only stereomer. The relative stereochemistry of $7 \mathbf{a}$ and $8 \mathbf{a}$ as depicted were determined on the basis of NOESY experiments (see Supporting Information for details). As shown in Figure 1, for 7a, the cis relationship between H-8 and the isobutenyl group was established since the NOE correlation is observed between $\mathrm{H}-8$ and $\mathrm{H}-9$. For 8a, the NOE correlations between $\mathrm{H}-8$ and $\mathrm{H}-9$, and between $\mathrm{H}-8$ and $\mathrm{H}-2$ supports the trans relationship between $\mathrm{H}-8$ and $\mathrm{H}-1$ and the cis relationship between $\mathrm{H}-8$ and $\mathrm{H}-2$. In the transformation of 1 a into $7 \mathrm{a}, \mathrm{BF}_{3}$. OEt_{2} acts as both the Lewis acid character and the nucleophilic fluoride source in the carbofluorination of the acetylene. ${ }^{16}$ The relative stereochemistry may derive from anti-addition of the transient allylic carbonium ion from the less hindered β-face and the fluoride source across the acetylene. On the other hand, the minor product 8a may arise from addition of $\mathrm{BF}_{2} \mathrm{OH}$ and the allylic carbonium ion across the acetylene followed by an aqueous workup (Scheme 2).

Next, substrate 1a was subjected to fluorine-containing Lewis acids, including $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{Ph}_{3} \mathrm{CBF}_{4}$, and $\mathrm{Ph}_{3} \mathrm{CPF}_{6}$, to search for optimal conditions for the carbofluorination reaction. The results are summarized in Table 1. Decreasing the concentration of 1a to 0.01 or 0.0025 M in DCM with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ did not affect the cyclization reaction significantly and the desired product 7a was isolated in 47% and 54% yield, respectively, (Table 1, entries 2 and 3). Switching the solvent from DCM to $\mathrm{CH}_{3} \mathrm{CN}$ failed to provide the desired fluorination product 7a and the dehydration product 9 a was isolated in 20% yield (Table 1, entry 4). Changing the Lewis acid and the fluoride source to $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ (2.0 equiv) in DCM at 0.1 M concentration,

Table 1. Optimizing of Reaction Conditions in the Carbofluorination of 1a with Fluorine-Containing Lewis Acids

${ }^{a}$ Yields obtained from column chromatography over silica gel. ${ }^{b}$ The reaction was performed at $0{ }^{\circ} \mathrm{C}$.

Figure 1. NOE interactions for 7a and 8a.

Scheme 2. Suggested Reaction Paths for the Formation of $7 \mathrm{a}, 8 \mathrm{a}$, and 9 a from 1a with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$

1a gave 7 a and 8a in 5 min and in 41 and 12% yield, respectively (Table 1 , entry 5). Delightly, the use of 2.0 equiv of $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ at a concentration of 0.01 M in DCM completed the reaction within 30 min and afforded 7 a in 85% yield and the side products $8 \mathbf{a}$ and $9 \mathbf{a}$ in 8 and 5% yield, respectively (Table 1 , entry 6). Conducting the reaction at $0^{\circ} \mathrm{C}$ (Table 1 , entry 7) or lowering the concentration of 1 a (Table 1 , entry 8) did not improve the yield of 7a. Furthermore, the use of 1.2 equiv of $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ at 0.01 M in DCM required a longer reaction time $(24 \mathrm{~h})$ to afford a 52% yield of the desired product 7a (Table 1, entry 9). Unfortunately, switching the trityl cation source from $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ to $\mathrm{Ph}_{3} \mathrm{CPF}_{6}$ (Table 1, entry 10) gave predominantly the dehydration product $9 \mathbf{a}$ in 30% yield and a trace amount of the cycloisomerization product $8 \mathbf{a}$. Therefore, the use of $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ (2.0 equiv) with 1a at 0.01 M concentration in DCM under nitrogen (Table 1, entry 5) was the most efficient and was employed as the standard reaction conditions. It is important to state that reports on the use of the trityl cation $\left(\mathrm{Ph}_{3} \mathrm{C}^{+}\right)$to promote organic transformations have been limited to Mukaiyama aldol reactions, ${ }^{17}$ Diels-Alder reactions, ${ }^{18}$ Michael additions, ${ }^{19}$ hydride abstractions from metal-alkene and -diene complexes, ${ }^{20}$ dehydrogenation of polycyclic hydroaromatics, ${ }^{21}$ and deprotection of ketone acetals. ${ }^{22}$ Our current study reveals that $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ can behave as both the Lewis acid and the fluoride source in the carbofluorination of the N -3-arylpropargylpyrrolidine-tethered tertiary allylic alcohols, providing the fluorine-containing pyrrolizidine derivatives under mild reaction conditions in good yield and with high stereoselectivity (Scheme 3). Moreover, the use of the stable $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ powder is operationally easier than our previous method employing $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ for the carbofluorinaton of enynols. ${ }^{12 b}$ Recently, various fluorine-containing reagents including tetrafluoroborates been used both as a promotor

Scheme 3. $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$-Promoted Formation of 7a from 1a

and the nucleophilic fluoride source in numerous organic transformations have been extensively studied. ${ }^{23}$ It is worthy to mention that the fluorinated pyrrolizidines may have potential applications in medicinal chemistry since many monofluoroalkenes play an important role in pharmaceuticals. ${ }^{24}$

With optimized reaction conditions in hand, the scope of the carbofluorination reaction was investigated employing various aryl substituted alkynes using the standard reaction conditions. As can be seen from Table 2, substrates 1a-d having an

Table 2. $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$-Promoted Carbofluorination of $\mathbf{1}$

 1				 7	
entry	Ar	substrate	time	product	$\begin{aligned} & \text { yield } \\ & (\%)^{a} \end{aligned}$
1	phenyl	1a	25 min	7a	85
2	3-methylphenyl	1 b	30 min	7 b	71
3	4-methylphenyl	1c	45 min	7 c	50
4	4-biphenyl	1d	40 min	7d	40
5	1-naphthyl	1e	2.0 h	-	- ${ }^{\text {b }}$
6	3-methoxyphenyl	1f	10 min	7f	52
7	4-methoxyphenyl	1 g	25 min	-	- ${ }^{\text {c }}$
8	3-trifluoromethylphenyl	1h	2.0 h	7h	55
9	3-carbethoxyphenyl	1 i	1.0 h	7 i	52
10	4-carbethoxyphenyl	1 j	1.5 h	7j	48
11	3-nitrophenyl	1k	1.5 h	7 k	50
12	4-nitrophenyl	11	1 h	71	58
13	4-chlorophenyl	1 m	20 min	7 m	60
14	4-bromophenyl	1 n	1.0 h	7 n	66
15	2-bromophenyl	10	30 min	-	$-^{d}$
16	2-nitrophenyl	1 p	4.5 h	-	-
17	2-carbethoxyphenyl	1q	2 h	-	- ${ }^{\text {a }}$
18	3-thienyl	1 r	40 min	7 r	14

${ }^{\text {a }}$ Isolated yields obtained from column chromatography over silica gel.
${ }^{b}$ Ketone $\mathbf{8 e}$ was isolated in 40% yield. ${ }^{c}$ Ketone $\mathbf{8 g}$ was isolated in 52% yield. ${ }^{d}$ Ketone 80 was Isolated in 14% yield. ${ }^{e}$ Lactone 11 was isolated in 46% yield.
electron-neutral aryl group on the acetylene afforded pyrrolizidine derivatives $7 \mathrm{a}-\mathrm{d}$ in $40-85 \%$ yields within a period of 45 min (Table 2, entries 1-4). Substrate 1e, bearing a naphthyl-substituted alkyne, failed to produce any fluorinated pyrrolizidine but instead the cycloisomerization product 8 e was isolated as the major product in 40% yield (Table 2, entry 5). While 1f, with an electron-donating methoxy group at the 3position of the phenyl ring, afforded the desired product 7 f in 10 min in 52% yield (Table 2, entry 6), compound $\mathbf{1 g}$, with a C4-methoxyphenyl-substituted alkyne, cycloisomerized to the corresponding ketone 8 g in 52% yield and none of the desired fluorination product was isolated (Table 2, entry 7). The formation of $\mathbf{8 g}$ from $\mathbf{~} \mathbf{g}$ was suggested in Scheme 4. The initial formed tertiary allylic carbonium ion was attacked by the electron-rich (p-methoxyphenyl)alkynyl group to give the allenyl intermediate 10. Addition of the tetrafluoroborate anion at the allenyl carbon center failed. Hydrolysis of the intermediate 10 provided ketone $\mathbf{8 g}$. Substrates possessing an electron withdrawing group, including a trifluoromethyl, ester, and nitro group on the phenyl ring ($\mathbf{1 h} \mathbf{- 1}$), were also effective in the carbofluorination and generated the fluorinated

Scheme 4. Mechanism for the Formation of 8 g from 1 g

pyrrolizidines ($7 \mathbf{h}-\mathbf{l}$) in $48-58 \%$ yields (Table 2, entries $8-$ 12). Moreover, the presence of a halogen atom at the 4 position of the phenyl ring, $\mathbf{1 m}$ and $\mathbf{1 n}$, did not influence the pyrrolizidines formation and the desired products, 7 m and 7 n , were isolated in 60 and 66% yield, respectively (Table 2, entries 13-14). Unfortunately, a substituent at the 2-position of the phenyl ring, $(\mathbf{1 0}-\mathbf{p})$, inhibited the carbofluorination reaction (Table 2, entries 15-16). Compound 10 gave the cycloisomerization product $8 \mathbf{0}$ in only 14% isolated yield and $\mathbf{1 p}$ gave a mixture of unidentified compounds. Apparently, the presence of a substituent at the C-2 position of the phenyl ring prevents $\mathrm{BF}_{4}{ }^{-}$from attacking at the acetylene carbon. This steric effect is consistent with that of the pyrrolidine-tethered naphthyl-substituted alkyne $\mathbf{1 e}$, which did not produce any desired fluorinated pyrrolizidine (Table 2, entry 5). Interestingly, substrate 1q (Figure 2) bearing a carbethoxy group at the

8e: Ar = Naphthyl $8 \mathrm{~g}: \mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ $8 \mathrm{o}: \mathrm{Ar}=2-\mathrm{BrC}_{6} \mathrm{H}_{4}$

$$
8 \mathrm{o}: \mathrm{Ar}=2-\mathrm{BrC}_{6} \mathrm{H}_{4}
$$

11

12

1s

7s

Figure 2. Structures of $\mathbf{8 e}, \mathbf{8 g}, \mathbf{8 o}, \mathbf{1 1 - 1 2}, \mathbf{1 s}$, and 7 s .

2-position of the phenyl group afforded the azabicyclic lactone 11 in 46% isolated yield under the standard reaction conditions. In this process, anti-addition of the transient allylic carbonium ion and the proximal ester group across the acetylene afford the pyrrolizidine-tethered lactone 11. The 3-thienyl-substituted alkyne $\mathbf{1 r}$ also gave the desired cyclized product $7 \mathbf{r}$, albeit in only 14% yield (Table 2, entry 18). Attempts to carry out the carbofluorination of substrate 12 (Figure 2), bearing a secondary allyic alcohol, failed. Instead the oxidation product ketone 6 (Scheme 1) was isolated in 80% yield. The formation of the ketone from 12 is consistent with those of literature reports on oxidation of secondary allylic alcohols with trityl cations. ${ }^{25}$ Unfortunately, attempts to synthesize a substrate bearing an n-butyl-substituted alkyne failed. Moreover, the tertiary allylic alcohol $\mathbf{1 s}$, substituted with a methyl and an ethyl group at the carbinol carbon, was subjected to the standard reaction conditions to give 7 s in 60% yield as a mixture of Z and E isomers (Figure 2).

Inspired by the work of Yamamoto on the TfOH-catalyzed cycloisomerization reaction of alkyne-tetherd tertiary alcohols, ${ }^{26}$ we then concentrated our effort on searching for a suitable Brønsted acid and optimal reaction conditions in obtaining ketone 8a from 1a. The screening of the cycloisomerization reaction was carried out by treating 1a with TfOH and $\mathrm{Tf}_{2} \mathrm{NH}$. The results are summarized in Table 3.

Table 3. Optimization of Cycloisomerization of 1 a to 8 a

		$\xrightarrow[(0.1 \mathrm{M})]{ }$	 8a			
entry	acid (equiv)	solvent	temp. $\left({ }^{\circ} \mathrm{C}\right)$	time	8 a	a
1	TfoH (0.1)	DCE	50	24 h	-	
2	TfOH (0.1)	DCM	28	24 h	-	-
3	TfOH (2.0)	DCM	28	10 min	-	10
4	$\mathrm{Tf}_{2} \mathrm{NH}$ (2.0)	DCM	28	1 min	45	7
5	$\mathrm{Tf}_{2} \mathrm{NH}$ (1.2)	DCM	28	6 h	39	7
6	$\mathrm{Tf}_{2} \mathrm{NH}$ (3.0)	DCM	28	1 min	29	-
7	$\mathrm{Tf}_{2} \mathrm{NH}(2.0)$	DCE	28	50 min	48	9
$8^{\text {b }}$	$\mathrm{Tf}_{2} \mathrm{NH}(2.0)$	DCM	28	24 h	21	19
9	$\mathrm{Tf}_{2} \mathrm{NH}(2.0)$	DCM	0	5 min	32	5
10	$\mathrm{Tf}_{2} \mathrm{NH}$ (2.0)	DCM	40	1 min	35	-
11	$\mathrm{Tf}_{2} \mathrm{NH}$ (2.0)	Ether	28	10 h	8	72
12	$\mathrm{Tf}_{2} \mathrm{NH}$ (2.0)	THF	28	40 h	-	58
13	$\mathrm{Tf}_{2} \mathrm{NH}$ (2.0)	Toluene	28	24 h	-	-
${ }^{a}$ Yield obtained from column chromatography over silica gel. ${ }^{b}$ Three drops of water were added.						

Substrate 1a was first treated with TfOH employing Yamamoto's protocol (0.1 equiv of TfOH in DCE), at 50 and $28^{\circ} \mathrm{C}$. After 24 h , only starting material 1a was recovered without any evidence for the formation of $8 \mathbf{a}$ at both temperatures (Table 3, entries 1-2). Increasing the amount of TfOH up to 2.0 equiv, 1a gave the dehydration product $9 \mathbf{a}$ in 10% yield (Table 3, entry 3). While employing 2.0 equiv of $\mathrm{Tf}_{2} \mathrm{NH}$ in DCM delivered 8a instantaneously in 45% isolated yield (Table 1 , entry 4), the use of 1.2 equiv of $\mathrm{Tf}_{2} \mathrm{NH}$ required longer reaction time (6 h) and gave only a 39% yield of $\mathbf{8 a}$ (Table 3, entry 5). In both cases, the dehydration product $9 \mathbf{a}$ was isolated in 7% yield in each case. It is important to state that, in this simple operation, three carbon stereocenters of 8a are created; however, only the single stereoisomer shown was isolated. Moreover, the relative stereochemistry does not erode in this high acidic condition. Increasing $\mathrm{Tf}_{2} \mathrm{NH}$ loading (Table 3 entry 6), changing the solvent system to dicholoroethane (DCE) (Table 3, entry 7) or addition of a small amount of water (Table 3, entry 8) into the reaction mixture did not improve the cycloisomerization reaction. No improvements were observed when the reaction was conducted in DCM at 0 or $40{ }^{\circ} \mathrm{C}$ (Table 3, entries $9-10$). The use of ether gave $8 \mathbf{a}$ in 8% yield (Table 3, entries 11). Furthermore, no desired product was obtained in THF or toluene (Table 3, entry 1213). Therefore, the use of 2.0 equiv of $\mathrm{Tf}_{2} \mathrm{NH}$ in DCM at 0.1 M concentration was chosen as the optimal conditions for transformation of $\mathbf{1}$ into ketone 8.

With the optimized reaction conditions in hand (Table 3, entry 3), we further investigated the substrate scope of this cycloisomerization of $\mathbf{1 a}$ using 2.0 equiv of $\mathrm{Tf}_{2} \mathrm{NH}$ in DCM at room temperature. In general, substrates substituted with an electron-neutral or -rich aryl group at the alkyne were capable of transforming 1 into ketone 8 in minutes, albeit in 15-45\% yields (Table 4, entries $1-6$). Unfortunately, substrates $\mathbf{1 i} \mathbf{i} \mathbf{j}$,

Table 4. $\mathrm{Tf}_{2} \mathrm{NH}$-Promoted Cycloisomerization of 1 to 8

entry	Ar	substrate	time (min)	product	yield (\%) ${ }^{a}$
1	phenyl	$\mathbf{1 a}$	1	$\mathbf{8 a}$	45
2	3-methylphenyl	$\mathbf{1 b}$	1	$\mathbf{8 b}$	36
3	4-methylphenyl	$\mathbf{1 c}$	1	$\mathbf{8 c}$	36
4	1-naphthyl	$\mathbf{1 e}$	5	$\mathbf{8 e}$	20
5	3-methoxyphenyl	$\mathbf{1 f}$	10	$\mathbf{8 f}$	30
6	4-methoxyphenyl	$\mathbf{1 g}$	1	$\mathbf{8 g}$	15
7	4-carbethoxyphenyl	$\mathbf{1 j}$	10	-	-
8	4-nitrophenyl	$\mathbf{1 l}$	5	-	-
9	4-chlorophenyl	$\mathbf{1 m}$	5	$\mathbf{8 m}$	45
10	4-bromophenyl	$\mathbf{1 n}$	5	$\mathbf{8 n}$	38
11	2-bromophenyl	$\mathbf{1 0}$	10	$\mathbf{8 o}$	32
12	3-thienyl	$\mathbf{1 r}$	1	$\mathbf{8 r}$	25

${ }^{a}$ Isolated yields obtained from column chromatography over silica gel.
bearing an electron-withdrawing group on the phenyl ring, decomposed when subjected to $\mathrm{Tf}_{2} \mathrm{NH}$ under the same reaction conditions. (Table 4, entries 7-8). Moreover, substrates $\mathbf{1 m}-\mathbf{o}$, bearing a bromine or chlorine atom on the phenyl ring, were also successfully transformed into the corresponding ketones $\mathbf{8 m}-\mathbf{o}$ in $32-45 \%$, respectively (Table 4, entries 9-11). The 3-theinyl-substituted alkyne $\mathbf{1 r}$ also reacted with $\mathrm{Tf}_{2} \mathrm{NH}$ to afford the corresponding ketone $8 \mathbf{r}$ in 25% isolated yield (Table 4, entry 12).

In conclusion, a carbofluorination reaction of N-arylpropar-gylpyrrolidine- tethered tertiary allylic alcohols to afford fluorinated pyrrolizidines in an excellent stereoselective fashion is described. The procedure employs the inexpensive and air stable triphenylcarbenium tetrafluoroborate instead of the strong Lewis acid $\left(\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\right)$. Furthermore, 2-alkenyl-3aroylpyrrolizidine derivatives are available with excellent stereoselectivity via cycloisomerization of the substrates employing bis(trifluoromethane)sulfonamide. Further studies on the extension of the present methods to the construction of other nitrogen-containing heterocycles are currently underway in our laboratory.

- EXPERIMENTAL SECTION

General Considerations. All reactions were conducted in carefully dried glassware in an atmosphere of nitrogen. The addition of anhydrous solvents or liquid (regents) was performed with an ovendried syringe or cannula through a septum. Solids were added under gentle stream of nitrogen. Solvents were predried by molecular sieves and then by passing through an $\mathrm{Al}_{2} \mathrm{O}_{3}$ column. Melting points were measured in open glass capillaries with an electronic apparatus and were uncorrected. Chromatographic purification was performed with flash column chromatography using silica P60, 40-63 m (230-400 mesh). ${ }^{1} \mathrm{H}$ nuclear magnetic resonance (NMR) spectra were recorded
with 400 and 500 MHz spectrometers. Chemical shifts are given in parts per million (ppm) relative to $\mathrm{Me}_{4} \mathrm{Si}(0.00 \mathrm{ppm})$ with either $\mathrm{Me}_{4} \mathrm{Si}$ or the solvent residual peak $\left(\mathrm{CHCl}_{3}, 7.26 \mathrm{ppm}\right)$ as internal standard. Coupling patterns are described by the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Coupling costants (J) are given in Herz (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded with 100 and 125 MHz spectrometers using solvent $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ as internal standard. Mass spectra were determined by using a spectrometer at a 70 eV ionization potential. Peaks are listed according to their mass/charge (m / e) value with percent relative abundance. High-resolution mass spectra were obtained with a double-focusing mass spectrometer.
Representative Procedure for the Synthesis of Starting Compound 1. To a solution of (\pm)-proline $2(3.45 \mathrm{~g}, 30.00 \mathrm{mmol})$ in dried $\mathrm{MeOH}(30 \mathrm{~mL})$, thionyl chloride $(3.93 \mathrm{~g}, 33.00 \mathrm{mmol})$ was added dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h under refluxing condition and then allowed to cool to room temperature. The solvent was removed in vacuo to afford a crude methyl pyrrolidine-2-carboxylate ($5.02 \mathrm{~g}, 30.00 \mathrm{mmol}, 95 \%$). To a solution of methyl pyrrolidine-2-carboxylate ($5.02 \mathrm{~g}, 30.00 \mathrm{mmol}$) in toluene $(30 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(9.2 \mathrm{~mL})$ and propargyl bromide (4.64 g , $39.00 \mathrm{mmol})$. The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 18 h before it was cooled to room temperature and quenched with aqueous NaHCO_{3} solution (90 mL). The mixture was extracted with toluene $(90 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with water ($200 \mathrm{~mL} \times 2$) and brine $(200 \mathrm{~mL} \times 2$). The organic layer was dried over $\mathrm{MgSO}_{4}(15 \mathrm{~g})$ and filtered. Solvent were evaporated under reduced pressure. The crude mixture was purified by flash column chromatography over silica gel (EtOAc/hexanes 1:3) to afford the corresponding methyl-1-(prop-2-yn-1-yl)- pyrrolidine-2-carboxylate $(4.34 \mathrm{~g}, 25.96 \mathrm{mmol}, 91 \%)$. To a 250 mL round-bottom flask, equipped with a stirring bar and a dropping funnel, under nitrogen at 0 ${ }^{\circ} \mathrm{C}$ were added lithium aluminum hydride ($\mathrm{LAH}, 1.97 \mathrm{~g}, 51.92 \mathrm{mmol}$) and dry $\mathrm{Et}_{2} \mathrm{O}$ (130 mL). The methyl-1-(prop-2-yn-1-yl)pyrrolidine-2carboxylate ($4.34 \mathrm{~g}, 25.96 \mathrm{mmol}$) was added dropwise to the reaction at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 4 h . The solution was added a mixture of $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ and $\mathrm{NH}_{3(\mathrm{aq})}$ $(20 \mathrm{~mL})$ to obtain a buffer solution (pH 8). The suspension was filtered through a bed of Celite, and the solid residue was washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was dried over $\mathrm{MgSO}_{4}(15 \mathrm{~g})$ and concentrated under reduced pressure in vacuo to afford the corresponding (1 -(prop2 -yn-1-yl)pyrrolidin-2-yl)methanol 3 ($3.61 \mathrm{~g}, 25.96 \mathrm{mmol}, 98 \%$). To a two-neck flask equipped with a stirring bar were added $\mathrm{CuI}(0.19 \mathrm{~g}$, $1.04 \mathrm{mmol})$, $\mathrm{PhI}(6.36 \mathrm{~g}, 31.15 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.06 \mathrm{~g}, 0.52$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(26 \mathrm{~mL})$ under nitrogen. The mixture was allowed to stir at room temperature for 30 min followed by addition of (1-(prop2 -yn-1-yl)pyrrolidin-2-yl)methanol 3 ($3.61 \mathrm{~g}, 25.96 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 8 h before quenching with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL). The resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with water $(70 \mathrm{~mL} \times 2)$ and brine (70 $\mathrm{mL} \times 2$). The organic layer was dried over $\mathrm{MgSO}_{4}(15 \mathrm{~g})$ and filtered. Solvent was evaporated under reduced pressure. The crude mixture was purified by flash column chromatography over silica gel (EtOAc/ hexanes $1: 1$) to afford the corresponding product (1 -(3-phenylprop-2-$\mathrm{yn}-1-\mathrm{yl})$ pyrrolidin-2- yl)methanol $4(4.19 \mathrm{~g}, 19.47 \mathrm{mmol}, 75 \%)$. Oxalyl chloride $(2.77 \mathrm{~g}, 21.81 \mathrm{mmol})$ was added dropwise to a solution of dimethyl sulfoxide (DMSO, $3.41 \mathrm{~g}, 43.62 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(73 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for 15 min followed by addition of (1-(3-phenylprop-2-yn-1-yl)pyrrolidin-2-yl)methanol $4(3.1317 \mathrm{~g}, 14.54 \mathrm{mmol})$. After being stirred for 30 min , the reaction was allowed to warm to $-50^{\circ} \mathrm{C}$ followed by addition of $\mathrm{Et}_{3} \mathrm{~N}$ $(14.2 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 2 h before quenching with brine $(30 \mathrm{~mL})$. The resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} \times 3)$. The combined organic extracts were washed $(70 \mathrm{~mL} \times 2)$ with water and brine $(70 \mathrm{~mL} \times 2)$. The filtrate was dried over $\mathrm{MgSO}_{4}(15 \mathrm{~g})$ and concentrated under reduced pressure in vacuo to afford the corresponding 1-(3-phenylprop-2-yn-1-yl)pyrrolidine-2-carbaldehyde $5(3.10 \mathrm{~g}, 14.54 \mathrm{mmol}, 98 \%)$. To a solution of 1-(3-phenylprop-2-yn-1-yl)pyrrolidine- 2 -carbaldehyde 5
$(3.10 \mathrm{~g}, 14.54 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(73 \mathrm{~mL})$ was added 1-(triphenylphosphoranylidene)propan-2-one ($6.94 \mathrm{~g}, 21.81 \mathrm{mmol}$). The reaction mixture was stirred for 24 h under refluxing condition before it cooled to room temperature, quenched with saturated brine $(50 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with water $(70 \mathrm{~mL} \times 2)$ and saturated brine ($70 \mathrm{~mL} \times 2$). The filtrate was dried over MgSO_{4} and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography over silica gel (EtOAc/hexanes $1: 3$) to afford the corresponding (E)-4-(1-(3-phenylprop-2-yn-1-yl)-pyrrolidin-2-yl)but-3-en-2-one $6(3.20 \mathrm{~g}, 12.64 \mathrm{mmol}, 88 \%)$. Methylmagnesium bromide (38 mL of a 1.0 M solution in THF, 37.91 mmol) was added dropwise over 30 min to a stirred solution of 4-(1-(3-phenylprop-2-yn-1-yl)pyrrolidin-2-yl)but-3-en-2-one 6 (3.20 $\mathrm{g}, 12.64 \mathrm{mmol})$ in dried THF $(126 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under an nitrogen atmosphere. The mixture was stirred at room temperature for 1 h . After which time, the reaction mixture was quenched with water (30 $\mathrm{mL})$ and extracted with EtOAc $(30 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with water $(70 \mathrm{~mL} \times 2)$ and saturated brine $(70$ $\mathrm{mL} \times 2$). The filtrate was dried over MgSO_{4} and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography over silica gel (EtOAc/hexanes 1:1) to afford the corresponding (E)-2-methyl-4-(1-(3-phenylprop- 2-yn-1-yl)pyrolidin-2-yl)but-3-en-2-ol (1a) ($2.72 \mathrm{~g}, 10.11 \mathrm{mmol}, 80 \%$) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H})$, $5.84(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=15.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=$ $17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{td}, J=8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.00(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{q}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H})$, $1.92-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}$, $3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.2,131.6$ (2C), 128.1 (2C), 128.0, 127.9, 123.2, 84.9, 84.7, 70.3, 64.4, 52.2, 41.0, 31.7, 29.7, 29.7, 22.0; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3369,2970,2928,2818,2346$, 2373, 1675, 1598, 1459, 1363, 1153, 974, $756 \mathrm{~cm}^{-1}$; MS (ESI) m/e (\%) $270.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 262.2$ (10); HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 270.1858$, found 270.1859.
(1-(Prop-2-yn-1-yl)pyrrolidin-2-yl)methanol (3). (3.61 g, 25.96 $\mathrm{mmol}, 98 \%)$. A colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.64$ (dd, $J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=17.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.38(\mathrm{~m}$, 2H), 3.07-2.99 (m, 1H), 2.89-2.82 (m, 1H), $2.69(\mathrm{q}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44-2.29($ br s., 1 H$), 2.20(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.84(\mathrm{~m}$, $1 \mathrm{H}), 1.84-1.68(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 79.1$, 72.5, 62.3, 61.8, 53.2, 41.0, 27.5, 23.1; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3491,2970,1230$, $780,699 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 140.1\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 120.1(25)$; HRMS (ESI) calcd. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 140.0998$, found 140.0997.
(1-(3-Phenylprop-2-yn-1-yl)pyrrolidin-2-yl)methanol (4). (3.61 g, $25.96 \mathrm{mmol}, 75 \%$). A yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.48-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 3 \mathrm{H}), 3.78-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~d}, \mathrm{~J}$ $=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=11.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 1 \mathrm{H})$, $2.98-2.91(\mathrm{~m}, 1 \mathrm{H}) ; 2.78(\mathrm{q}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 1 \mathrm{H})$, $1.87-1.73(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 131.7(2 \mathrm{C})$, 128.3 (2C), 128.1, 123.1, 84.9, 84.8, 62.1, 61.9, 53.5, 41.8, 27.8, 23.5; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3376,2948,1599,1459,1328 \mathrm{~cm}^{-1}$; MS (ESI) m / e (\%) $216.1\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$ 216.1388, found 216.1385

1-(3-Phenylprop-2-yn-1-yl)pyrrolidine-2-carbaldehyde (5). (3.10 g, $14.54 \mathrm{mmol}, 98 \%)$. A yellow oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.59(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 3.72$ $(\mathrm{d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{ddd}, J=9.3,6.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.13(\mathrm{~m}$, $1 \mathrm{H}), 2.76(\mathrm{q}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.84(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.5,131.6$ (2C), 128.2 (2C), 128.2, 122.8, 85.2, 84.4, 69.7, 53.3, 43.0, 26.9, 24.0; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2965, 2716, 1727, 1598, $1490 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 214.1([\mathrm{M}+$ $\left.\mathrm{H}]^{+}, 40\right), 166.7$ (45), 148.8 (12), 102.1 (61), 91.0 (3); HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$214.1232, found 214.1232.
(E)-4-(1-(3-Phenylprop-2-yn-1-yl)pyrrolidin-2-yl)but-3-en-2-one (6). ($3.20 \mathrm{~g}, 12.64 \mathrm{mmol}, 88 \%$). A yellow oil: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{dd}, J=16.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52$ $(\mathrm{d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.12(\mathrm{~m}, 1 \mathrm{H})$,
$2.74(\mathrm{q}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.89$ $(\mathrm{m}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.5,148.7,132.0,131.7$ (2C), 128.2 (2C), 128.1, 123.0, 85.2, 84.3, 63.5, 52.6, 41.6, 31.8, 26.7, 22.7; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2924, 2368, 2346, 1677, 1357, 1255, 978, $757 \mathrm{~cm}^{-1}$; MS (ESI) m/e (\%) $254.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+$ $\mathrm{H}]^{+}$254.1542, found 254.1545 .
(E)-2-Methyl-4-(1-(3-(m-tolyl)prop-2-yn-1-yl)pyrrolidin-2-yl)but-$3-e n-2-o l(1 b) . ~(0.26 \mathrm{~g}, 0.95 \mathrm{mmol}, 70 \%)$. A yellow oil: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=15.5,8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.70(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{td}, J=$ $8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}), 2.04-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 1 \mathrm{H})$, $1.70-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.4,137.8,132.2,128.8,128.7,128.1,127.7,123.0$, 85.1, 84.2, 70.4, 64.4, 52.0, 40.9, 31.6, 29.8, 29.6, 22.0, 21.1; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3369,2970,2926,2346,2224,1945,1602,1459,1361$, 1234, 1153, 974, $891 \mathrm{~cm}^{-1}$; MS (APCI) $m / e(\%) 284.2\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100); HRMS (APCI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 284.2014$, found 284.2018.
(E)-2-Methyl-4-(1-(3-(p-tolyl)prop-2-yn-1-yl)pyrrolidin-2-yl)but-3-en-2-ol (1c). ($0.22 \mathrm{~g}, 0.77 \mathrm{mmol}, 90 \%$). A yellow oil: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.85(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=15.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=$ $16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{td}, J=8.9,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.04(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{q}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{br}$ s., 1 H$)$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.73(\mathrm{~m}$, $1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.7,138.0,131.5$ (2C), 128.9 (2C), 127.2, $119.9,85.1,83.5,70.3,64.5,51.9,40.8,31.5,29.7,29.5,22.0,21.3$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3373,2969,2924,2233,1904,1671,1509,1460,1361$, 1331, 1152, 974, $816 \mathrm{~cm}^{-1}$; MS (APCI) $m / e(\%) 284.2\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100), 194.2 (5); HRMS (APCI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$ 284.2014, found 284.2021.
(E)-4-(1-(3-([1,1'-Biphenyl]-4-yl)prop-2-yn-1-yl)pyrrolidin-2-yl)-2-methylbut-3-en-2-ol (1d). $(0.20 \mathrm{~g}, 0.59 \mathrm{mmol}, 39 \%)$. A yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{dd}, J=6.2,2.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=6.6,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-$ $7.33(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=15.6,8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{td}, J=$ $9.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{q}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{q}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.05-1.96 (m, 1H), 1.94-1.85 (m, 1H), 1.85-1.74 (m, 1H), 1.71$1.61(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 141.4,140.8,140.4,132.1$ (2C), 128.8 (2C), 127.9, 127.6, 127.0 (2C), 126.9 (2C), 122.1, 85.4, 84.8, 70.5, 64.6, 52.2, 41.1, 31.7, 29.8, 29.7, 22.1; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3372,2968,2358,2632,1366,1120$, 975, 843, 764, $698 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 346.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$, 342.1 (5), 304.1 (5); HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$ 346.2171, found 346.2169 .
(E)-2-Methyl-4-(1-(3-(naphthalen-1-yl)prop-2-yn-1-yl)pyrrolidin-$2-y l) b u t-3-e n-2-o l(1 e) .(0.64 \mathrm{~g}, 2.02 \mathrm{mmol}, 80 \%)$. A yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=7.1,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.90$ $(\mathrm{d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dd}, J=15.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{td}, J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15$ $(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{q}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 1 \mathrm{H})$, $1.95-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}$, 3H), $1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 141.7, 133.3, 133.1, 130.5, 128.4, 128.2, 127.5, 126.6, 126.3, 126.0, 125.1, 120.8, 89.4, 83.0, 70.4, 64.5, 52.0, 41.1, 31.6, 29.8, 29.6, 22.0; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3365, 3058, 2969, 2935, 2816, 2227, 1932, 1812, 1689, 1586, 1507, 1424, 1395, 1359, 1330, 1153, 973, 799, $774 \mathrm{~cm}^{-1}$; MS (ESI) m/e (\%) $320.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 284.2$ (5), 266.2 (5); HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$320.2014, found 320.2012.
(E)-4-(1-(3-(3-Methoxyphenyl)prop-2-yn-1-yl)pyrrolidin-2-yl)-2-methylbut-3-en-2-ol (1f). ($0.19 \mathrm{~g}, 0.64 \mathrm{mmol}, 70 \%$). A yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.6$ Hz, 1H), 6.99-6.95 (m, 1H), $6.86(\mathrm{dd}, J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J$
$=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=15.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J$ $=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{td}, J=8.9,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.03(\mathrm{q}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{q}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.97(\mathrm{~m}$, $1 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 1 \mathrm{H})$, $1.34(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2$, 141.3, 129.3, 127.9, 124.2, 124.2, 116.6, 114.5, 84.7, 84.7, 70.5, 64.6, 55.2, 52.2, 41.1, 31.7, 29.8, 29.7, 22.1; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3364,2969,2366$, 1603, 1463, 1360, 1318, 1288, 1203, 1162, 1045, $976 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 300.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 300.1964$, found 300.1964.
(E)-4-(1-(3-(4-Methoxyphenyl)prop-2-yn-1-yl)pyrrolidin-2-yl)-2-methylbut-3-en-2-ol (1g). ($0.20 \mathrm{~g}, 0.68 \mathrm{mmol}, 43 \%)$. A yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 5.84(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=15.5,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ $(\mathrm{td}, J=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{q}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.23($ br s., 1 H$), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.81-$ $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,141.6,133.0$ (2C), 127.4, 115.2, 113.7 (2C), 84.7, 82.9, 70.2, 64.4, 55.1, 51.9, 40.9, 31.5, 29.7, 29.5, 21.9; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3374,2968,2932,2872,2838,2228,1607,1509$, 1291, 1248, 1152, 1033, $832 \mathrm{~cm}^{-1}$; MS (ESI) m/e (\%) 300.2 ([M + $\mathrm{H}]^{+}, 100$), 284.2 (15), 279.3 (5), 246.2 (10); HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$300.1964, found 300.1956 .
(E)-2-Methyl-4-(1-(3-(3-(trifluoromethyl)phenyl)prop-2-yn-1-yl)-pyrrolidin-2-yl)but-3-en-2-ol (1h). (1.13 g, $4.29 \mathrm{mmol}, 87 \%)$. A yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=15.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.45(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{td}, J=8.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{q}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{q}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.93-$ $1.84(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$, $1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.3,134.8,130.9$ $(\mathrm{q}, J=32.6 \mathrm{~Hz}), 128.8,128.5(\mathrm{q}, J=3.7 \mathrm{~Hz}), 128.1,124.5(\mathrm{q}, J=3.7$ $\mathrm{Hz}), 124.2,123.7(\mathrm{q}, J=272.4 \mathrm{~Hz}), 86.9,83.3,70.6,64.7,52.4,41.1$, 31.8, 29.8, 29.7, 22.1; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.9$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3372,2970,2826,2961,1638,1334,1166,1129,1094,974$, 902, 801, $696 \mathrm{~cm}^{-1}$; MS (ESI) m/e (\%) 338.2 ([M+H] ${ }^{+}, 100$), 330.2 (5), 284.1 (5); HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NOF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 338.1732, found 338.1723.
(E)-Ethyl 3-(3-(2-(3-hydroxy-3-methylbut-1-en-1-yl)pyrrolidin-1-yl)prop-1-yn-1-yl)benzoate (1i). ($0.26 \mathrm{~g}, 0.75 \mathrm{mmol}, 50 \%$). A yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dt}, J$ $=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dt}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.85(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=15.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38$ $(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=17.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.15(\mathrm{td}, J=8.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{q}, J$ $=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.15($ br s., 1 H$), 2.04-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}$, $1 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.34(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.0$, 141.2, 135.8, 132.8, 130.7, 129.0, 128.3, 128.1, 123.7, 86.0, 83.8, 70.6, 64.6, 61.2, 52.4, 41.2, 31.8, 29.8, 29.7, 22.1, 14.3; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3384$, 2971, 2941, 2430, 2196, 1721, 1367, 1293, 1225, 1105, 974, $754 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 342.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 229.1$ (10), 143.1 (5); HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 342.2069$, found 342.2065.
(E)-Ethyl 4-(3-(2-(3-hydroxy-3-methylbut-1-en-1-yl)pyrrolidin-1-yl)prop-1-yn-1-yl)benzoate (1j). ($0.22 \mathrm{~g}, 0.65 \mathrm{mmol}, 43 \%$). A yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.48$ (d, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=15.6,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.38(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{td}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.61(\mathrm{q}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 1 \mathrm{H})$, $1.83-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.34$ $(\mathrm{s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.1$, 141.2, 131.6 (2C), 129.7, 129.4 (2C), 128.1, 127.9, 88.3, 84.2, 70.6, 64.7, 61.1, 52.5, 41.3, 31.8, 29.8, 29.7, 22.1, 14.3; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3396$, 2964, 2194, 1719, 1629, 1365, 1307, 1274, 1106, 767, $740 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 342.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$342.2069, found 342.2068.
(E)-2-Methyl-4-(1-(3-(3-nitrophenyl)prop-2-yn-1-yl)pyrrolidin-2-yl)but-3-en-2-ol (1k). ($0.40 \mathrm{~g}, 1.28 \mathrm{mmol}, 85 \%$). A yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.18-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.52(\mathrm{dd}, J=15.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{td}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.61(\mathrm{q}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H})$, $1.83-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.1,141.3,137.4,129.2,128.0$, 126.5, 125.1, 122.7, 88.2, 82.5, 70.6, 64.8, 52.5, 41.1, 31.8, 29.9, 29.7, 22.1; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2256,2967,2944,1981,1531,1351,1155,1105$, 974, $736 \mathrm{~cm}^{-1}$; MS (ESI) $\mathrm{m} / \mathrm{e}(\%) 315.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$315.1709, found 315.1705.
(E)-2-Methyl-4-(1-(3-(4-nitrophenyl)prop-2-yn-1-yl)pyrrolidin-2-yl)but-3-en-2-ol (1I). ($0.42 \mathrm{~g}, 1.35 \mathrm{mmol}, 90 \%$). A yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 5.84(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=15.6,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{td}, J=8.9$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{q}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-$ $1.96(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.58(\mathrm{~m}$, $2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 147.0, 141.4, 132.4 (2C), 130.2, 128.0, 123.5 (2C), 91.2, 83.1, 70.6, 64.9, 52.5, 41.3, 31.8, 29.9, 29.7, 22.1; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3354,2968,2875$, 2828, 2360, 2232, 1966, 1594, 1518, 1343, 1107, 854, $750 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 315.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$315.1709, found 315.1700.
(E)-4-(1-(3-(4-Chlorophenyl)prop-2-yn-1-yl)pyrrolidin-2-yl)-2-methylbut-3-en-2-ol (1m). $(0.95 \mathrm{~g}, 3.09 \mathrm{mmol}, 72 \%)$. A yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=15.6,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{td}, J=8.7$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{q}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-$ $1.95(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.61(\mathrm{~m}$, $1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 141.2, 133.9, 132.9 (2C), 128.5 (2C), 128.1, 121.7, 86.1, 83.6, 70.5, 64.7, 52.4, 41.2, 31.7, 29.8, 29.7, 22.1; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3357,2968,2875$, 2827, 2901, 2644, 1489, 1363, 1151, 1091, 827, 754, $740 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 306.1\left([\mathrm{M}+2+\mathrm{H}]^{+}, 30\right), 304.1\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$, 296.1 (5), 264.1 (5); HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NOCl}[\mathrm{M}+\mathrm{H}]^{+}$ 304.1468, found 304.1463.
(E)-4-(1-(3-(4-Bromophenyl)prop-2-yn-1-yl)pyrrolidin-2-yl)-2-methylbut-3-en-2-ol (1n). ($0.93 \mathrm{~g}, 2.66 \mathrm{mmol}, 93 \%$). A yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=15.6,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{td}, J=8.6$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{q}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-$ $1.95(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.56(\mathrm{~m}$, $2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 141.2, 133.2 (2C), 131.5 (2C), 128.2, 122.2, 122.1, 86.4, 83.7, 70.5, 64.7, 52.4, 41.2, 31.8, 29.8, 29.7, 22.1; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3372,2970,2875$, 2816, 1654, 1485, 1460, 1359, 1330, 1151, $973,823 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 350.1\left([\mathrm{M}+2+\mathrm{H}]^{+}, 100\right), 348.1\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 194.1$ (10); HR-MS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NOBr}[\mathrm{M}+\mathrm{H}]^{+}$348.0963, found 348.0966 .
(E)-4-(1-(3-(2-Bromophenyl)prop-2-yn-1-yl)pyrrolidin-2-yl)-2-methylbut-3-en-2-ol (10). ($0.83 \mathrm{~g}, 2.39 \mathrm{mmol}, 77 \%$). A yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=7.6$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 5.89$ $(\mathrm{d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=15.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=17.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{q}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.75(\mathrm{~m}$, $1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.3,133.5,132.3,129.1,128.1,126.9,125.4$ (2C), 89.9, 83.4, 70.6, 64.0, 52.0, 40.9, 31.8, 29.8, 29.7, 22.2; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3370, 2970, 2942, 2359, 1930, 1803, 1469, 1360, 1153, 947, $754 \mathrm{~cm}^{-1}$; MS (ESI) $\mathrm{m} / \mathrm{e}(\%) 350.1\left([\mathrm{M}+2+\mathrm{H}]^{+}, 95\right), 348.1([\mathrm{M}+$ $\mathrm{H}]^{+}, 100$), 341.1 (5), 145.0 (10); HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NOBr}$ $[\mathrm{M}+\mathrm{H}]^{+} 348.0963$, found 348.0955 .
(E)-2-Methyl-4-(1-(3-(2-nitrophenyl)prop-2-yn-1-yl)pyrrolidin-2-yl)but-3-en-2-ol (1p). ($0.37 \mathrm{~g}, 1.19 \mathrm{mmol}, 79 \%)$. A yellow oil: ${ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=15.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=17.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.59(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{q}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H})$, $1.70-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0,141.4,134.9,132.6,128.4,128.0,124.5,118.6$, 94.0, 80.1, 70.6, 64.2, 52.1, 41.1, 31.8, 29.8, 29.7, 22.2; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3383, 2967, 2876, 2419, 1545, 1525, 1351, 1143, 980, $741 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 315.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 229.1$ (10), 143.1 (5); HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$315.1709, found 315.1700.
(E)-Ethyl 2-(3-(2-(3-hydroxy-3-methylbut-1-en-1-yl)pyrrolidin-1-yl)prop-1-yn-1- yl)benzoate (1q). ($0.31 \mathrm{~g}, 1.81 \mathrm{mmol}, 60 \%$). A yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55(\mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ $(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=15.5$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ $(\mathrm{d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{td}, J=8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{q}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.71(\mathrm{q}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}$, $1 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.34(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.3$, 141.4, 134.4, 132.4, 131.4, 130.0, 128.1, 127.6, 123.7, 90.4, 83.4, 70.6, 64.5, 61.1, 52.3, 41.3, 31.8, 29.8, 29.6, 22.2, 14.3; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3404$, 2969, 2427, 2195, 1966, 1720, 1460, 1365, 1276, 1080, 974, 756, 740 cm^{-1}; MS (ESI) m/e (\%) $342.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 342.2069$, found 342.2065 .
(E)-2-Methyl-4-(1-(3-(thiophen-3-yl)prop-2-yn-1-yl)pyrrolidin-2-yl)but-3-en-2-ol (1r). ($1.02 \mathrm{~g}, 3.72 \mathrm{mmol}, 80 \%$). A brown oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=5.0,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=4.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.51$ (dd, $J=15.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=17.0$ $\mathrm{Hz}, 1 \mathrm{H}) 3.14(\mathrm{td}, J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.60$ $(\mathrm{q}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.80-$ $1.73(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{br} \mathrm{s.} 1 \mathrm{H}),, 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.33$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.1,130.0,128.3$, 128.2, 125.1, 122.3, 84.6, 79.7, 70.5, 64.6, 52.4, 41.2, 31.8, 29.8, 29.7, 22.1; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3386,2970,2822,2338,2231,1676,1459,1359$, 1148, 974, $780 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 276.5\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$, 121.4 (2); HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}$276.1422, found 276.1421.
(E)-3-Methyl-1-(1-(3-phenylprop-2-yn-1-yl)pyrrolidin-2-yl)pent-1-en-3-ol (1s). $(0.16 \mathrm{~g}, 0.55 \mathrm{mmol}, 55 \%)$. Compound 1 s was obtained as a mixture of diastereomers. A yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.46-7.40\left(\mathrm{~m}, 2 \mathrm{H}+2 \mathrm{H}^{\prime}\right), 7.32-7.27\left(\mathrm{~m}, 3 \mathrm{H}+3 \mathrm{H}^{\prime}\right), 5.75(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.74\left(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}^{\prime}\right), 5.52(\mathrm{dd}, J=15.6,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.50\left(\mathrm{dd}, J=15.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}^{\prime}\right), 3.72(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ $\left(\mathrm{d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}^{\prime}\right), 3.48(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=16.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}^{\prime}\right), 3.17-3.11\left(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}^{\prime}\right), 3.06-2.98\left(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}^{\prime}\right), 2.64(\mathrm{q}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64\left(\mathrm{q}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}^{\prime}\right), 2.04-1.94\left(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}^{\prime}\right)$, $1.91-1.82\left(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}^{\prime}\right), 1.82-1.74\left(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}^{\prime}\right), 1.69-1.61(\mathrm{~m}$, $\left.1 \mathrm{H}+1 \mathrm{H}^{\prime}\right), 1.61-1.54\left(\mathrm{~m}, 2 \mathrm{H}+2 \mathrm{H}^{\prime}\right), 1.53-1.39\left(\mathrm{br}\right.$ s., $\left.1 \mathrm{H}+1 \mathrm{H}^{\prime}\right)$, $1.30(\mathrm{~s}, 3 \mathrm{H}), 1.28\left(\mathrm{~s}, 3 \mathrm{H}^{\prime}\right), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.3 \mathrm{H}^{\prime}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.0,139.9,131.7$ (2C), 129.2, 129.1, 128.2 (2C), 127.9, 123.3, 84.9, 84.7, 73.0, 72.9, 64.6, 52.3, 52.2, 41.1, 35.2, 35.2, 31.9, 27.5, 27.3, 22.1, 8.4, 8.3; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3406$, 2967, 2329, 2231, 1598, 1460, 1367, 1151, 976, 756, $692 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 284.7\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 268.4$ (4); HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$284.2014, found 284.2013.

General Experimental Procedure for $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$-Promoted Carbofluorination of (E)-2-Methyl-4-(1-(3-phenyprop-2-yn-1-yl)pyrrolidin-2-yl)but-3-en-2-ol (1a). Synthesis of (1S*,7aR*,Z)-2-(Fluoro(phenyl)methylene)-1-(2-methylprop-1-en-1- yl)hexahydro1 H -pyrrolizine (7a). To a solution of $\mathrm{Ph}_{3} \mathrm{CBF}_{4}(0.17 \mathrm{~g}, 0.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ was added 1a $(70 \mathrm{mg}, 0.26 \mathrm{mmol})$ at room temperature under nitrogen. The mixture was stirred for 25 min until 1a was disappeared as monitored by TLC. The reaction mixture was quenched with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The resulting mixture was extracted with DCM $(3 \times 30 \mathrm{~mL})$. The organic phase was dried over MgSO 4 , filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (EtOAc/hexanes
$=1: 1)$ to give of $7 \mathrm{a}(0.06 \mathrm{~g}, 0.22 \mathrm{mmol}, 85 \%)$ as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 5.01$ $(\mathrm{dt}, J=9.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=16.1$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{q}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.15$ $(\mathrm{m}, 1 \mathrm{H}), 2.67(\mathrm{dt}, J=10.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.00-$ $1.92(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-1.59$ $(\mathrm{m}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 151.5(\mathrm{~d}, J=239.7 \mathrm{~Hz}), 132.5,132.0(\mathrm{~d}, J=29.6 \mathrm{~Hz}), 128.4,127.7$ (2C), 127.0 (d, $J=6.1 \mathrm{~Hz}, 2 \mathrm{C}), 125.0,122.1(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 73.9$, $55.4(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 54.2,45.5(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 29.8,25.5,24.5,18.1$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-103.5$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3404,2908$, 2847, 2541, 2358, 1702, 1600, 1443, 1375, 1272, 1051, $924 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 272.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 268.2$ (10), 221.2 (10); HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{FN}[\mathrm{M}+\mathrm{H}]^{+}$272.1815, found 272.1823 .
(1S*,7aR*,Z)-2-(Fluoro(m-tolyl)methylene)-1-(2-methylprop-1-en-1-yl)hexahydro-1H-pyrrolizine (7b). The crude residue obtained from the reaction of $\mathbf{1 b}(73 \mathrm{mg}, 0.26 \mathrm{mmol})$ with $\mathrm{Ph}_{3} \mathrm{CBF}_{4}(0.17 \mathrm{~g}$, $0.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ was purified by flash column chromatography to give $7 \mathbf{b}$ ($53 \mathrm{mg}, 0.18 \mathrm{mmol}, 71 \%$) as a yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.07(\mathrm{~m}$, $1 \mathrm{H}), 5.04(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=$ $16.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.00$ $(\mathrm{m}, 1 \mathrm{H}), 2.69-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.99-$ $1.89(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-1.56$ $(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.2$ (d, $J=238.2$ $\mathrm{Hz}), 137.3,132.2(\mathrm{~d}, J=29.5 \mathrm{~Hz}), 131.8,129.0,127.6,127.6(\mathrm{~d}, \mathrm{~J}=$ $5.6 \mathrm{~Hz}), 125.7,123.9(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 122.8(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 73.8,55.5$ $(\mathrm{d}, J=5.2 \mathrm{~Hz}), 54.0,45.6(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 29.8,25.5,24.5,21.4,18.1$; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-104.7$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3754,2967$, 2375, 1686, 1376, 1123, 1050, $927 \mathrm{~cm}^{-1}$; MS (ESI) m/e (\%), 286.2 $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 282.2$ (5), 221.2 (5); HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{FN}[\mathrm{M}+\mathrm{H}]^{+}$286.1971, found 286.1963.
(1S*,7aR*,Z)-2-(Fluoro(p-tolyl)methylene)-1-(2-methylprop-1-en-1-yl)hexahydro-1H-pyrrolizine (7c). The crude residue obtained from the reaction of $1 \mathrm{c}(0.0737 \mathrm{~g}, 0.26 \mathrm{mmol})$ with $\mathrm{Ph}_{3} \mathrm{CBF}_{4}(0.17 \mathrm{~g}, 0.52$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ was purified by flash column chromatography to give $7 \mathrm{c}(37 \mathrm{mg}, 0.13 \mathrm{mmol}, 50 \%)$ as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{dt}, J=9.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dt}, J=16.3,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.75$ (dd, $J=16.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.19$ $(\mathrm{m}, 1 \mathrm{H}), 3.05$ (ddd, $\mathrm{J}=10.2,8.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dt}, J=10.1,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.85-$ $1.77(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.2(\mathrm{~d}, J=237.6 \mathrm{~Hz}), 138.1,131.8$, 129.5 (d, $J=30.1 \mathrm{~Hz}$), 128.4 (2C), $126,7(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{C}), 125.7$, 122.3 (d, $J=21.7 \mathrm{~Hz}), 73.8,55.5(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 54.0,45.7(\mathrm{~d}, J=3.7$ $\mathrm{Hz}), 29.8,25.5,24.5,21.3,18.1 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -105.0; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2971, 2929, 2474, 1671, 1607, 1449, 1375, 1297, $1109,823 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 286.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 276.1$ (5); HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{FN}[\mathrm{M}+\mathrm{H}]^{+}$286.1971, found 286.1972.
(1S*,7aR*,Z)-2-([1,1'-Biphenyl]-4-ylfluoromethylene)-1-(2-meth-ylprop-1-en-1-yl)hexahydro-1H-pyrrolizine (7d). The crude residue obtained from the reaction of $\mathbf{1 d}(90 \mathrm{mg}, 0.26 \mathrm{mmol})$ with $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ ($0.17 \mathrm{~g}, 0.52 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ was purified by flash column chromatography to give $\mathbf{7 d}(36 \mathrm{mg}, 0.10 \mathrm{mmol}, 40 \%)$ as a yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (dd, $J=16.2,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.53-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{dt}$, $J=10.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.91-$ $1.83(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.2(\mathrm{~d}, J=238.8 \mathrm{~Hz}), 141.1,140.4$, $132.5,131.0(\mathrm{~d}, J=29.6 \mathrm{~Hz}), 128.8(2 \mathrm{C}), 127.6,127.3(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, 2C), 127.0 (2C), 126.4 (2C), $125.2,122.5(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 73.8,55.4$ $(\mathrm{d}, J=5.5 \mathrm{~Hz}), 54.1,45.6(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 29.9,25.5,24.5,18.2$; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-98.3; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2923,2345,2654$, 1447, 1379, 1265, 1077, 845, 734, $699 \mathrm{~cm}^{-1}$; MS (ESI) m/e (\%) 348.2 $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 328.3$ (5); HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{FN}[\mathrm{M}+$ $\mathrm{H}]^{+} 348.2128$, found 348.2129 .
(1S*,7aR*, Z*)-2-(Fluoro(3-methoxyphenyl)methylene)-1-(2-methylprop-1-en-1-yl)hexahydro-1H-pyrrolizine (7f). The crude residue obtained from the reaction of if $(78 \mathrm{mg}, 0.26 \mathrm{mmol})$ with $\mathrm{Ph}_{3} \mathrm{CBF}_{4}(0.17 \mathrm{~g}, 0.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ was purified by flash column chromatography to give $7 \mathrm{f}(41 \mathrm{mg}, 0.14 \mathrm{mmol}, 52 \%)$ as a yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.02-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{dd}, J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.23(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=15.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.68-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{dt}, J=10.8,8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 7 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,152.3(\mathrm{~d}, J=243.4 \mathrm{~Hz})$, $133.8,132.6(\mathrm{~d}, J=28.7 \mathrm{~Hz}), 129.0,124.1,119.5(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 119.1$ $(\mathrm{d}, J=17.9 \mathrm{~Hz}), 114.6,112.8(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 73.3,55.3,54.5(\mathrm{~d}, J=$ 6.3 Hz), $54.4,45.1(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 30.4,25.5,24.5,18.2$; ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-98.6 ; \mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3050,2929,2966,2415$, 2348, 2305, 1680, 1600, 1581, 1453, 1433, 1290, 1228, 1044, 736 cm^{-1}; MS (APCI) m/e (\%) $302.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (APCI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}$302.1920, found 302.1912.
(1S*,7aR*,Z)-2-(Fluoro(3-(trifluoromethyl)phenyl)methylene)-1-(2-methylprop-1-en-1-yl)hexahydro-1H-pyrrolizine (7h). The crude residue obtained from the reaction of $1 \mathrm{~h}(88 \mathrm{mg}, 0.26 \mathrm{mmol})$ with $\mathrm{Ph}_{3} \mathrm{CBF}_{4}(0.17 \mathrm{~g}, 0.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ was purified by flash column chromatography to give $7 \mathbf{h}(49 \mathrm{mg}, 0.14 \mathrm{mmol}, 55 \%)$ as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dt}, J$ $=9.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dt}, J=16.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=16.6$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{q}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09$ (ddd, J $=10.1,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dt}, J=10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.03(\mathrm{~m}$, $1 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 4 \mathrm{H})$, $1.58(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.6$ $(\mathrm{d}, J=237.3 \mathrm{~Hz}), 133.3,132.9(\mathrm{~d}, J=30.6 \mathrm{~Hz}), 130.2(\mathrm{q}, J=32.3 \mathrm{~Hz})$, $129.7(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 128.3,125.6(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 124.8,124.8(\mathrm{q}, J$ $=3.7 \mathrm{~Hz}), 124.0(\mathrm{q}, J=272.4 \mathrm{~Hz}), 123.9(\mathrm{qd}, J=7.7,3.9 \mathrm{~Hz}), 74.1$, $55.7(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 53.9,45.5(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 29.6,25.3,24.4,18.0$; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.6,-105.8$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2154$, 1642, 1265, $723 \mathrm{~cm}^{-1}$. MS (EI) m/e (\%) 339.2 ($\mathrm{M}^{+}, 100$), 270.1 (18), 256.0 (16), 201.1 (13); HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NF}_{4}[\mathrm{M}]^{+}$ 339.1610, found 339.1611 .

Ethyl 3-((Z)-Fluoro((1S*,7aR*)-1-(2-methylprop-1-en-1-yl)-tetrahydro-1H-pyrrolizin- 2(3H)-ylidene)methyl)benzoate (7i). The crude residue obtained from the reaction of $\mathbf{1 i}(89 \mathrm{mg}, 0.26 \mathrm{mmol})$ with $\mathrm{Ph}_{3} \mathrm{CBF}_{4}(0.17 \mathrm{~g}, 0.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ was purified by flash column chromatography to give $7 \mathbf{i}(46 \mathrm{mg}, 0.14 \mathrm{mmol}, 52 \%)$ as a yellow oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.96(\mathrm{dt}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.90(\mathrm{dt}, J=9.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{dt}, J$ $=16.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=16.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.41(\mathrm{~m}$, $1 \mathrm{H}), 3.29-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{ddd}, J=10.1,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ $(\mathrm{dt}, J=10.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 1 \mathrm{H})$, $1.87-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.40$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.1,150.2$ $(\mathrm{d}, J=238.7 \mathrm{~Hz}), 133.0,132.4(\mathrm{~d}, J=30.2 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=5.7 \mathrm{~Hz})$, 130.1, 129.3, $128.2(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 127.7,124.6,124.1(\mathrm{~d}, J=21.0$ $\mathrm{Hz}), 73.7,61.0,55.3(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 53.9,45.3(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 29.6$, 25.4, 24.3, 18.1, 14.3; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-104.5$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2930, 2430, 1637, 1309, 1106, $739 \mathrm{~cm}^{-1}$; MS (ESI) m / e (\%) $344.2\left(\left[\mathrm{M}+\mathrm{H}^{+}, 100\right)\right.$, 279.2 (10); HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$344.2026, found 344.2026.

Ethyl 4-((Z)-Fluoro((1S*,7aR*)-1-(2-methylprop-1-en-1-yl)-tetrahydro-1H-pyrrolizin- 2(3H)-ylidene)methyl)benzoate (7j). The crude residue obtained from the reaction of $\mathbf{1 j}(89 \mathrm{mg}, 0.26 \mathrm{mmol})$ with $\mathrm{Ph}_{3} \mathrm{CBF}_{4}(0.17 \mathrm{~g}, 0.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ was purified by flash column chromatography to give $7 \mathbf{j}(43 \mathrm{mg}, 0.12 \mathrm{mmol}, 48 \%)$ as a yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.98(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=16.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-$ $3.42(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{q}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.56$ $(\mathrm{m}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 1 \mathrm{H})$, $1.71(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.1,150.5(\mathrm{~d}, J=239.0 \mathrm{~Hz}), 136.0(\mathrm{~d}, J$
$=29.3 \mathrm{~Hz}), 133.0,130.0,129.3,128.9(2 \mathrm{C}), 126.6(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{C})$, $124.5,73.8,61.1,55.6(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 54.1,45.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 29.8$, 25.5, 24.4, 28.2, 14.3; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-105.4$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2936,2475,1719,1366,1277,1106,1080,773,739 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 344.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$344.2026, found 344.2031.
(1S*,7aR*,Z)-2-(Fluoro(3-nitrophenyl)methylene)-1-(2-methyl-prop-1-en-1-yl)hexahydro-1H-pyrrolizine (7k). The crude residue obtained from the reaction of $\mathbf{1 k}(82 \mathrm{mg}, 0.26 \mathrm{mmol})$ with $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ ($0.17 \mathrm{~g}, 0.52 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ was purified by flash column chromatography to give $7 \mathbf{k}(41 \mathrm{mg}, 0.13 \mathrm{mmol}, 50 \%)$ as a yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ (ddd, $J=$ $8.3,2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dt}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.97-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{dt}, J=16.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=$ $16.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.10$ (ddd, $\mathrm{J}=10.1,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dt}, J=10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.05$ $(\mathrm{m}, 1 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 4 \mathrm{H})$, $1.59(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.8$ $(\mathrm{d}, J=237.8 \mathrm{~Hz}), 147.9,134.3,133.6(\mathrm{~d}, J=31.1 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=$ 6.1 Hz), 128.8, $126.6(\mathrm{~d}, J=19.5 \mathrm{~Hz}), 124.1,122.9,122.2(\mathrm{~d}, J=7.0$ $\mathrm{Hz}), 74.2,55.7(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 53.9,45.5(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 29.6,25.5$, 24.4, 18.2; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-106.4$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2920, 2610, 2224, 1738, 1531, 1090, $923 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%)$ $317.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{H}]^{+}$317.1665, found 317.1666.
(1S*, $7 a R^{*}, Z$)-2-(Fluoro(4-nitrophenyl)methylene)-1-(2-methyl-prop-1-en-1-yl)hexahydro-1H-pyrrolizine (7I). The crude residue obtained from the reaction of $11(82 \mathrm{mg}, 0.26 \mathrm{mmol})$ with $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ $(0.17 \mathrm{~g}, 0.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ was purified by flash column chromatography to give $7 \mathrm{l}(48 \mathrm{mg}, 0.15 \mathrm{mmol}, 58 \%)$ as a yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.01-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{dt}, J=16.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (dd, $J=16.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.28(\mathrm{~m}, 1 \mathrm{H})$, 3.11 (ddd, $J=10.2,8.0,4.1,1 \mathrm{H}), 2.63(\mathrm{dt}, J=10.1,8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.17-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.1(\mathrm{~d}, J=237.3 \mathrm{~Hz}), 147.0,138.1(\mathrm{~d}, J$ $=29.8 \mathrm{~Hz}), 133.3,128.9(\mathrm{~d}, J=20.7 \mathrm{~Hz}), 127.3(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{C})$, 124.4, 122.9 (2C), 74.1, $56.0(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 53.9,45.9(\mathrm{~d}, J=2.7 \mathrm{~Hz})$, 29.7 (d, J = 5.7 Hz), 25.5, 24.3, 18.2; ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -106.9; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2928, 2853, 2527, 2246, 1734, 1521, 1346, 1091, 950, $855 \mathrm{~cm}^{-1}$; MS (ESI) m/e (\%) $317.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 297.2(20)$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 317.1665$, found 317.1668.
(1S*,7aR*,Z)-2-((4-Chlorophenyl)fluoromethylene)-1-(2-methyl-prop-1-en-1-yl)hexahydro-1H-pyrrolizine ($7 m$). The crude residue obtained from the reaction of $\mathbf{1 m}(79 \mathrm{mg}, 0.26 \mathrm{mmol})$ with $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ $(0.17 \mathrm{~g}, 0.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ was purified by flash column chromatography to give $7 \mathrm{~m}(48 \mathrm{mg}, 0.16 \mathrm{mmol}, 60 \%)$ as a yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dt}, J=16.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.76 (dd, $J=16.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.19(\mathrm{~m}$, $1 \mathrm{H}), 3.06$ (ddd, $\mathrm{J}=10.2,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dt}, J=10.0,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 1 \mathrm{H})$, $1.66(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0(\mathrm{~d}, J=237.5 \mathrm{~Hz}), 134.0,132.4,130.7(\mathrm{~d}, J=30$ $0.4 \mathrm{~Hz}), 128.2(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{C}), 127.8(2 \mathrm{C}), 125.1,124.2(\mathrm{~d}, J=$ $21.2 \mathrm{~Hz}), 73.9,55.6(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 53.9,45.6(\mathrm{~d}, J=3.4 \mathrm{~Hz})$, 29.7, 25.5, 24.4, 18.1; ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-105.3$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2922, 2197, 1974, 1655, 1382, 1091, $739 \mathrm{~cm}^{-1}$; MS (ESI) m/e (\%) $308.1\left([\mathrm{M}+2+\mathrm{H}]^{+}, 25\right), 306.1\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 302.1$ (5); HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{22}$ CIFN [M + H] ${ }^{+}$306.1425, found 306.1418.
(1S*,7aR*,Z)-2-((4-Bromophenyl)fluoromethylene)-1-(2-methyl-prop-1-en-1-yl)hexahydro-1H-pyrrolizine (7n). The crude residue obtained from the reaction of $\mathbf{1 n}(91 \mathrm{mg}, 0.26 \mathrm{mmol})$ with $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ $(0.17 \mathrm{~g}, 0.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ was purified by flash column chromatography to give $7 \mathrm{n}(60 \mathrm{mg}, 0.17 \mathrm{mmol}, 66 \%)$ as a yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dt}, J=16.4,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.76 (dd, $J=16.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.21(\mathrm{~m}$,

1 H), 3.08 (ddd, $J=10.3,8.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dt}, J=9.9,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 1 \mathrm{H})$, $1.66(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.64-1.5(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.1(\mathrm{~d}, J=237.8 \mathrm{~Hz}), 132.4,131.1(\mathrm{~d}, J=30.3 \mathrm{~Hz})$, 130.8 (2C), 128.4 (d, $J=6.1 \mathrm{~Hz}, 2 \mathrm{C}), 125.1,124.2(\mathrm{~d}, J=21.2 \mathrm{~Hz})$, 122.3, $73.8,55.6(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 54.0,45.6(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 29.7,25.5$, 24.4, 18.1; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-105.6$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2967, 2929, 2538, 1912, 1686, 1676, 1487, 1446, 1395, 1287, 1160, 1091, 1010, $828 \mathrm{~cm}^{-1}$; MS (ESI) m/e (\%) $352.1\left([\mathrm{M}+2+\mathrm{H}]^{+}, 100\right)$, $350.1\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$, 311.2 (5); HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{BrFN}[\mathrm{M}+\mathrm{H}]^{+} 350.0920$, found 350.0913 .
(1S*,7aR*,Z)-2-(Fluoro(thiophen-3-yl)methylene)-1-(2-methyl-prop-1-en-1-yl)hexahydro-1H-pyrrolizine (7r). The crude residue obtained from the reaction of $\mathbf{1 r}(83 \mathrm{mg}, 0.30 \mathrm{mmol})$ with $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ $(0.20 \mathrm{~g}, 0.60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was purified by flash column chromatography to give $7 \mathbf{r}(11 \mathrm{mg}, 0.04 \mathrm{mmol}, 14 \%)$ as a brown oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.24$ (m, $1 \mathrm{H}), 7.14(\mathrm{~d}, J=5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dt}, J$ $=16.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=16.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.37(\mathrm{~m}$, $1 \mathrm{H}), 3.30-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{ddd}, J=10.3,8.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59$ $(\mathrm{dt}, J=10.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H})$, $1.85-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.66-1.60(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.2(\mathrm{~d}, J$ $=234.2 \mathrm{~Hz}), 133.8(\mathrm{~d}, J=33.6 \mathrm{~Hz}), 132.0,126.2(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 126.0$ $(\mathrm{d}, J=5.3 \mathrm{~Hz}), 124.9,122.9(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 122.1(\mathrm{~d}, J=21.1 \mathrm{~Hz})$, $74.1,55.2(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 53.8,45.7(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 30.1,25.6,24.4$, 18.3; ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-104.7$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3712$, 2925, 2435, 1673, 1446, 1376, 1246, 1188, 1090, 838, $789 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%), 278.5\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NFS}[\mathrm{M}+\mathrm{H}]^{+}$278.1379, found 278.1378.
(1S*,7aR*,Z)-2-(Fluoro(phenyl)methylene)-1-(2-methylbut-1-en-1-yl)hexahydro-1H-pyrrolizine (7s). The crude residue obtained from the reaction of $1 \mathrm{~s}(85 \mathrm{mg}, 0.30 \mathrm{mmol})$ with $\mathrm{Ph}_{3} \mathrm{CBF}_{4}(0.20 \mathrm{~g}, 0.60$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was purified by flash column chromatography to give $7 \mathrm{~s}(52 \mathrm{mg}, 0.18 \mathrm{mmol}, 60 \%)$ as a mixture of E and Z isomers: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.36(\mathrm{~m}, 2 \mathrm{H}$ $\left.+2 \mathrm{H}^{\prime}\right), 7.34-7.26\left(\mathrm{~m}, 3 \mathrm{H}+3 \mathrm{H}^{\prime}\right), 5.03\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}^{\prime}\right), 5.00-$ $4.94(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.92\left(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}^{\prime}\right), 3.78(\mathrm{dd}, J=16.2,3.1 \mathrm{~Hz}$, 1 H), 3.76 (dd, $\left.J=16.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}^{\prime}\right), 3.48-3.42\left(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}^{\prime}\right)$, 3.29-3.22 (m, $\left.1 \mathrm{H}+1 \mathrm{H}^{\prime}\right), 3.12-3.05\left(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}^{\prime}\right), 2.63(\mathrm{dt}, J=$ $\left.10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}+1 \mathrm{H}^{\prime}\right), 2.21-1.97\left(\mathrm{~m}, 2 \mathrm{H}+2 \mathrm{H}^{\prime}\right), 1.97-1.90(\mathrm{~m}, 1 \mathrm{H}$ $\left.+1 \mathrm{H}^{\prime}\right), 1.89-1.80\left(\mathrm{~m}, 2 \mathrm{H}+2 \mathrm{H}^{\prime}\right), 1.66-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.54(\mathrm{~m}$, $\left.4 \mathrm{H}^{\prime}\right), 0.99\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}^{\prime}\right), 0.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.1(\mathrm{~d}, \mathrm{~J}=238.3 \mathrm{~Hz}), 151.1(\mathrm{~d}, \mathrm{~J}=$ $238.1 \mathrm{~Hz}), 137.4,137.3,132.3(\mathrm{~d}, \mathrm{~J}=29.6 \mathrm{~Hz}), 132.3(\mathrm{~d}, \mathrm{~J}=30.0 \mathrm{~Hz})$, 128.2, 128.2, 127.7 (2C), 127.7 (2C), 127.0 (d, J = 5.9 Hz, 2C), 127.0 $(\mathrm{d}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{C}), 125.3,124.0,123.3(\mathrm{~d}, \mathrm{~J}=21.6 \mathrm{~Hz}), 73.9,73.8$, $55.5(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}), 55.4(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}), 54.1,54.0,45.4(\mathrm{~d}, \mathrm{~J}=3.6$ Hz), $45.3(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}), 32.2,29.9,29.8,24.9,24.5,24.4,22.4,16.3$, 12.4; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-104.5,-104.6$; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3357, 2966, 1684, 1446, 1272, 1051, 766, $696 \mathrm{~cm}^{-1}$; MS (ESI) m / e (\%), $286.6\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NF}[\mathrm{M}+$ $\mathrm{H}]^{+}$286.1971, found 286.1973.

General Experimental for the NHTf_{2}-Promoted Cycloisomerization of (E)-2-Methyl-4-(1-(3-phenylprop-2-yn-1-yl)-pyrrolidin-2-yl)but-3-en-2-ol (1a). Synthesis of ((1S*,2S*,7aR*)-1-(2-Methylprop-1-en-1-yl)hexahydro-1H-pyrrolizin-2-yl)(phenyl)methanone (8a). A solution of 1a $(0.0700 \mathrm{~g}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.6 \mathrm{~mL})$ was added $\mathrm{NHTf}_{2}(0.15 \mathrm{~g}, 0.52 \mathrm{mmol})$. The mixture was stirred for 1 min until all 1a was disappeared as monitored by TLC. The reaction mixture was quenched with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The resulting mixture was extracted with DCM $(3 \times 30 \mathrm{~mL})$. The organic phase was dried over MgSO 4 , filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography $(\mathrm{EtOAc} /$ hexanes $=2: 1)$ gave $\mathbf{8 a}(31 \mathrm{mg}, 0.10$ mmol, 45%) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.91$ $(\mathrm{m}, 2 \mathrm{H}), 7.55(\mathrm{tt}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 5.01-4.98$ $(\mathrm{m}, 1 \mathrm{H}), 3.96(\mathrm{td}, J=10.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=10.2,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.46-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.78-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.64(\mathrm{~m}, 1 \mathrm{H})$,
$1.59(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(150$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.9,137.1,135.1,133.1,128.5$ (2C), 128.5 (2C), 124.2, 71.7, 58.3, 54.9, 54.6, 48.6, 29.9, 25.7, 25.2, 18.2; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2923, 2854, 1676, 1596, 1443, 1375, 1241, 1221, 1097, 998, $834 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 270.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 268.2$ (5); HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 270.1858$, found 270.1862.
((1S*,2S*,7aR*)-1-(2-Methylprop-1-en-1-yl)hexahydro-1H-pyrro-lizin-2-yl)(m-tolyl)methanone (8b). The solution of $\mathbf{1 b}(74 \mathrm{mg}, 0.26$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$ was added $\mathrm{NHTf}_{2}(0.15 \mathrm{~g}, 0.52 \mathrm{mmol})$. The crude mixture was purified by flash column chromatography to give $\mathbf{8 b}$ ($27 \mathrm{mg}, 0.09 \mathrm{mmol}, 36 \%$) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.75-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 5.03-4.96(\mathrm{~m}$, $1 \mathrm{H}), 3.96(\mathrm{td}, J=10.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=10.2,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.46-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.78-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.81(\mathrm{~m}$, $1 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 200.1, 138.3, 137.2, 135.0, 133.9, 129.1, 128.4, 125.7, 124.3, 71.6, 58.3, 54.8, 54.7, 48.5, 30.0, 25.8, 25.2, 21.3, 18.2; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3406,2969,2924,2536,2484,2377$, 2347, 1677, 1445, 1376, 1260, 1182, 1162, 1023, 999, 731, $683 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 284.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$284.2014, found 284.2012.
((1S*,2S*,7aR*)-1-(2-Methylprop-1-en-1-yl)hexahydro-1H-pyrro-lizin-2-yl)(p-tolyl)methanone (8c). The solution of $1 \mathrm{c}(74 \mathrm{mg}, 0.26$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$ was added $\mathrm{NHTf}_{2}(0.15 \mathrm{~g}, 0.52 \mathrm{mmol})$. The crude mixture was purified by flash column chromatography to give 8c ($27 \mathrm{mg}, 0.09 \mathrm{mmol}, 36 \%$) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.00-4.96$ $(\mathrm{m}, 1 \mathrm{H}), 3.89(\mathrm{td}, J=9.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=10.0,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.35-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{q}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.82$ $(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.86(\mathrm{~m}$, $2 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.55(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 199.9, 143.8, 134.9, 134.4, 129.1 (2C), 128.6 (2C), 125.0, 71.8, 58.7, 55.0 (2C), 48.5, 30.1, 25.8, 25.3, 21.6, 18.2; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2964,2927$, 2690, 2357, 1982, 1674, 1597, 1578, 1448, 1377, 1250, 1185, 1069, 1002, $704 \mathrm{~cm}^{-1}$; MS (ESI) m/e (\%) $284.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 270.2$ (15); HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$284.2014, 284.2006.
((1S*,2S*,7aR*)-1-(2-Methylprop-1-en-1-yl)hexahydro-1H-pyrro-lizin-2-yl) (naphthalen-1-yl)methanone (8e). The solution of $\mathbf{1 e}$ (83 $\mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$ was added $\mathrm{NHTf}_{2}(0.15 \mathrm{~g}, 0.52$ mmol). The crude mixture was purified by flash column chromatography to give $8 \mathbf{e}(17 \mathrm{mg}, 0.05 \mathrm{mmol}, 20 \%)$ as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{dd}, J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.88-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-$ $7.46(\mathrm{~m}, 3 \mathrm{H}), 4.97-4.92(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{td}, J=10.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ (dd, $J=10.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.11-2.97(\mathrm{~m}, 3 \mathrm{H})$, $2.78(\mathrm{dt}, J=10.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.64(\mathrm{~m}$, $1 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 204.5, 137.0, 134.7, 133.8, 132.3, 130.0, 128.3, 127.7, 127.4, 126.4, 125.6, 124.5, 124.5, 124.3, 71.7, 58.9, 58.4, 55.1, 49.3, 30.0, 25.7, 25.3, 18.2; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3367, 3049, 2970, 2925, 2437, 2359, 1681, 1506, 1445, 1376, 1266, 1244, 1179, 1111, 1043, $804 \mathrm{~cm}^{-1}$; MS (ESI) m/e (\%) $320.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$, 311.2 (5); HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}$320.2014, found 320.2013.
(3-Methoxyphenyl)((1S*,2S*,7aR*)-1-(2-methylprop-1-en-1-yl)-hexahydro-1H-pyrrolizin-2-yl)methanone (8f). The solution of $\mathbf{1 f}$ $(78 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$ was added $\mathrm{NHTf}_{2}(0.15 \mathrm{~g}$, 0.52 mmol). The crude mixture was purified by flash column chromatography to give $\mathbf{8 f}(23 \mathrm{mg}, 0.08 \mathrm{mmol}, 30 \%)$ as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.45$ $(\mathrm{m}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ $(\mathrm{d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{td}, J=9.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.50$ (dd, $J=10.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{q}, J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.00-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.68(\mathrm{~m}$, $1 \mathrm{H}), 2.00-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 1 \mathrm{H})$, $1.61(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.1$, 159.8, 138.7, 134.6, 129.4, 124.8, 121.2, 119.7, 112.5, 71.7, 58.6, 55.4, 55.2, 55.0, 48.5, 30.1, 25.8, 25.2, 18.2; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2961,2934,2348$,

1678, 1596, 1582, 1450, 1430, 1287, 1262, 1195, 1044, 825, 796, 739 cm^{-1}; MS (ESI) m/e (\%) $300.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 300.1964$, found 300.1972.
(4-Methoxyphenyl)((1S*,2S*,7aR*)-1-(2-methylprop-1-en-1-yl)-hexahydro-1H-pyrrolizin-2-yl)methanone (8g). The solution of 1 g $(78 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$ was added $\mathrm{NHTf}_{2}(0.15 \mathrm{~g}$, $0.52 \mathrm{mmol})$. The crude mixture was purified by flash column chromatography to give $8 \mathrm{~g}(18 \mathrm{mg}, 0.04 \mathrm{mmol}, 15 \%)$ as a yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dt}, J=10.1,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{dd}, J=10.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.49(\mathrm{~m}, 1 \mathrm{H})$, $3.13-3.07(\mathrm{~m}, 1 \mathrm{H}), 303(\mathrm{q}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.83-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}$, $3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.8,163.7$, $135.5,130.9$ (2C), 130.1, 123.8, 113.7 (2C), 71.7, 58.2, 55.5, 54.8, 53.8, 48.7, 29.9, 25.7, 25.1, 18.2; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3841,2939,2358,2030$, 1662, 1600, 1575, 1512, 1459, 1422, 1379, 1310, 1253, 1172, 1027, $847 \mathrm{~cm}^{-1}$; MS (ESI) $\mathrm{m} / e(\%) 300.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 300.1964$, found 300.1956.
(4-Chlorophenyl)((1S*,2S*,7aR*)-1-(2-methylprop-1-en-1-yl)-hexahydro-1H-pyrrolizin-2-yl)methanone (8 m). The solution of $\mathbf{1 m}$ $(79 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$ was added $\operatorname{NHTf}_{2}(0.15 \mathrm{~g}$, 0.52 mmol). The crude mixture was purified by flash column chromatography to give $8 \mathrm{~m}(36 \mathrm{mg}, 0.12 \mathrm{mmol}, 45 \%)$ as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dt}, J=9.8,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.46 (dd, $J=10.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.95(\mathrm{~m}$, $2 \mathrm{H}), 2.86(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.68(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 2 \mathrm{H})$, $1.85-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.2,139.6,135.6,134.9,129.9$ (2C), 128.8 (2C), 124.6, 71.8, 58.3, 55.0 (2C), 48.8, 30.1, 25.8, 25.2, 18.2; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3390,2930,2196,1662,1589,1382,1909,1010$, $841,740 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 306.1\left([\mathrm{M}+2+\mathrm{H}]^{+}, 25\right), 304.1$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HR-MS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}$ 304.1468, found 304.1460.
(4-Bromophenyl)((1S*,2S*,7aR*)-1-(2-methylprop-1-en-1-yl)-hexahydro-1H-pyrrolizin-2-yl)methanone (8n). The solution of $\mathbf{1 n}$ $(91 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$ was added $\mathrm{NHTf}_{2}(0.15 \mathrm{~g}$, 0.52 mmol). The crude mixture was purified by flash column chromatography to give $\mathbf{8 n}(34 \mathrm{mg}, 0.10 \mathrm{mmol}, 38 \%)$ as a yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.57(\mathrm{~m}$, $2 \mathrm{H}), 5.00-4.95(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{tr}, J=9.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=$ $9.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=$ $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.68(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.57(\mathrm{~m}$, $1 \mathrm{H}), 1.60(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.2,135.9,135.1,131.7$ (2C), 130.0 (2C), 128.4, 124.2, 71.6, 58.1, 54.9, 54.6, 48.8, 30.0, 25.7, 25.1, 18.2; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3404,2922,2547,2359,2345,1959,1676,1585,1400$, 1251, 1105, 1071, 1009, 840, $739 \mathrm{~cm}^{-1}$; MS (ESI) m/e (\%) 350.1 ([M $\left.+2+\mathrm{H}]^{+}, 100\right)$, $348.1\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$348.0963, found 348.0958.
(2-Bromophenyl)((1S*,2S*,7aR*)-1-(2-methylprop-1-en-1-yl)-hexahydro-1H-pyrrolizin-2-yl)methanone (80). The solution of 10 $(91 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$ was added $\mathrm{NHTf}_{2}(0.15 \mathrm{~g}$, $0.52 \mathrm{mmol})$. The crude mixture was purified by flash column chromatography to give $\mathbf{8 o}(29 \mathrm{mg}, 0.08 \mathrm{mmol}, 32 \%)$ as a yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{dd}, J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ $(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.91-4.84(\mathrm{~m}, 1 \mathrm{H}), 3.78$ (td, $J=10.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=10.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.26$ $(\mathrm{m}, 1 \mathrm{H}), 3.04-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{q}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.72(\mathrm{~m}$, $1 \mathrm{H}), 2.00-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.57(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 204.3, 142.0, 134.8, 133.5, 131.5, 128.4, 127.1, 124.0, 119.0, 71.6, 58.8, 57.5, 55.0, 49.7, 29.8, 25.7, 25.1, 18.3; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2929,2538,2691$, 1431, 1380, 1053, 764, $740 \mathrm{~cm}^{-1}$; MS (ESI) $m / e(\%) 350.1([\mathrm{M}+2+$ $\left.\mathrm{H}]^{+}, 100\right), 348.1\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 298.2$ (5); HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$348.0963, found 348.0962.
((1S*,2S*,7aR*)-1-(2-Methylprop-1-en-1-yl)hexahydro-1H-pyrro-lizin-2-yl) (thiophen-3-yl)methanone (8r). The solution of $\mathbf{1 r}(72 \mathrm{mg}$, $0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$ was added $\mathrm{NHTf}_{2}(0.15 \mathrm{~g}, 0.52$
mmol). The crude mixture was purified by flash column chromatography to give $8 \mathbf{r}(18 \mathrm{mg}, 0.065 \mathrm{mmol}, 25 \%)$ as a brown oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{dd}, J=2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=5.3$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=5.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-5.00(\mathrm{~m}, 1 \mathrm{H}), 3.71$ (td, $J=9.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.29(\mathrm{~m}, 1 \mathrm{H})$, $3.02-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dt}, J=10.2,6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.99-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 4 \mathrm{H})$, $1.52(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.4$, 142.8, 134.8, 132.6, 127.2, 126.1, 124.8, 71.8, 58.3, 56.9, 54.9, 48.7, 30.1, 25.8, 18.2; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3103,2938,1668,1511,1417,1244$, 1182, 1101, 834, $749 \mathrm{~cm}^{-1}$; MS (ESI) $\mathrm{m} / \mathrm{e}(\%), 276.5\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100), 258.4 (3); HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}$ 276.1422, found 276.1420.
(E)-2-(3-Methylbuta-1,3-dien-1-yl)-1-(3-phenylprop-2-yn-1-yl)pyrrolidine (9a). The crude mixture was purified by flash column chromatography to give 9 a ($29 \mathrm{mg}, 0.08 \mathrm{mmol}, 32 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}$, $3 \mathrm{H}), 6.34(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=15.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}$, $2 \mathrm{H}), 3.75(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.13$ $(\mathrm{m}, 2 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 1 \mathrm{H})$, $1.87(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.6,136.1,131.7,130.1,128.3,128.2,123.0$, 116.5, 85.4, 84.0, 65.4, 52.0, 41.1, 31.8, 22.1, 18.6; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2980$, 2540, 1440, 1001, 764, $740 \mathrm{~cm}^{-1}$; MS (ESI) m / e (\%) 252.2 ([M + $\mathrm{H}]^{+}, 100$), 199.0 (5), 190.0 (5), 176.1 (5); HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$252.1752, found 252.1749.
(Z)-3-((1S*,7aR*)-1-(2-Methylprop-1-en-1-yl)tetrahydro-1H-pyr-rolizin-2(3H)-ylidene)isobenzofuran-1(3H)-one (11). The crude residue obtained from the reaction of $\mathbf{1 q}(89 \mathrm{mg}, 0.26 \mathrm{mmol})$ with $\mathrm{Ph}_{3} \mathrm{CBF}_{4}(0.17 \mathrm{~g}, 0.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ was purified by flash column chromatography to give $11(31 \mathrm{mg}, 0.10 \mathrm{mmol}, 40 \%)$ as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.68-$ $7.60(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 2 \mathrm{H}), 5.25-5.16(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=$ $17.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.40$ (dt, $J=7.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07$ (ddd, $J=10.3,7.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dt}$, $J=10.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.92-$ $1.84(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 166.9,140.2,138.0,134.0,133.0,129.7,128.8,125.4,125.3,125.1$, 123.1, 74.3, 56.9, 53.5, 46.0, 30.1, 25.5, 24.4, 18.6; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2954$, 2929, 2430, 2048, 1845, 1776, 1641, 1446, 1380, 1273, 1033, 764 cm^{-1}; MS (ESI) $m / e(\%) 296.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HR-MS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 296.1651$, found 296.1659.
(E)-4-(1-(3-Phenylprop-2-yn-1-yl)pyrrolidin-2-yl)but-3-en-2-ol (12). ($0.47 \mathrm{~g}, 1.86 \mathrm{mmol}, 53 \%$). Compound 12 was obtained as a mixture of diastereomers. A yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.46-7.41 (m, $\left.2 \mathrm{H}+2 \mathrm{H}^{\prime}\right), 7.32-$ Jonsnow57.27 (m, 3H + 3H'), 5.79 (dd, $\left.J=6.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}^{\prime}\right), 5.75(\mathrm{dd}, J=6.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=$ $8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.51\left(\mathrm{dd}, J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}^{\prime}\right), 4.38-4.29(\mathrm{~m}, 1 \mathrm{H}+$ $\left.1 \mathrm{H}^{\prime}\right), 3.74\left(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}^{\prime}\right), 3.70(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=$ $9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.46\left(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}^{\prime}\right), 3.18-3.11\left(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}^{\prime}\right), 3.02$ $\left(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}+1 \mathrm{H}^{\prime}\right), 2.64\left(\mathrm{q}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}+1 \mathrm{H}^{\prime}\right), 2.04-1.93$ $\left(\mathrm{m}, 2 \mathrm{H}+2 \mathrm{H}^{\prime}\right), 1.92-1.83\left(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}^{\prime}\right), 1.83-1.74\left(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}^{\prime}\right)$, $1.71-1.60\left(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}^{\prime}\right), 1.30(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=2.7$ $\left.\mathrm{Hz}, 3 \mathrm{H}^{\prime}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.3,137.3,131.7$ (2C), 131.3, 131.3, 128.2 (2C), 128.0, 123.3 84.9, 84.8, 84.8, 68.3, 64.4, 64.3, 52.3, 52.3, 41.2, 41.1, 31.7, 31.7, 23.4, 23.3, 22.1; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3050,2855,2450,1221,990,887 \mathrm{~cm}^{-1}$; MS (ESI) m/e (\%) $256.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 238.4$ (3), 144.1 (4), 115.1 (11); HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$256.1701, found 256.1700.

ASSOCIATED CONTENT

(S) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.5b02025.

NMR spectra for compounds 1a-s, 3-6, 7a-d, 7f, 7h$\mathrm{n}, 7 \mathrm{r}-\mathrm{s}, 8 \mathrm{a}-\mathrm{c}, 8 \mathrm{e}-\mathrm{g}, 8 \mathrm{~m}-\mathrm{o}, 8 \mathrm{r}, 9 \mathrm{a}, 11$, and 12. (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: cheyeh@ntnu.edu.tw.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Science and Technology (MOST 104-2113-M-003-003) and National Taiwan Normal University.

REFERENCES

(1) (a) Robertson, J.; Stevens, K. Nat. Prod. Rep. 2014, 31, 1721. (b) Robins, D. J. Nat. Prod. Rep. 1989, 6, 221. (c) Hartmann, T.; Biller, A.; Witte, L.; Ernst, L.; Boppré, M. Biochem. Syst. Ecol. 1990, 18, 549. (d) Liddell, J. R. Nat. Prod. Rep. 2002, 19, 773. (e) Hartmann, T.; Witte. L. Chemistry, Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Pergamon: Oxford, 1995; pp 155-233. (f) Becker, D. P.; Flynn, D. L.; Moormann, A. E.; Nosal, R.; Villamil, C. I.; Loeffler, R.; Gullikson, G. W.; Moummi, C.; Yang, D. C. J. Med. Chem. 2006, 49, 1125. (g) Morriello, G. J.; DeVita, R. J.; Mills, S. G.; Young, J. R.; Lin, P.; Doss, G.; Chicchi, G. G.; DeMartino, J.; Kurtz, M. M.; Tsao, K.-L. C.; Carlson, E.; Townson, K.; Wheeldon, A.; Boyce, S.; Collinson, N.; Rupniak, N.; Moore, S. Bioorg. Med. Chem. 2008, 16, 2156. (h) Brinner, K. M.; Ellman, J. A. Org. Biomol. Chem. 2005, 3, 2109.
(2) Célérier, J. P.; Haddad, M.; Saliou, C.; Lhommet, G.; Dhimane, H.; Pommelet, J. C.; Chuche, J. Tetrahedron 1989, 45, 6161.
(3) Roche, C.; Delair, P.; Greene, A. E. Org. Lett. 2003, 5, 1741.
(4) Takahata, H.; Banba, Y.; Momose, T. Tetrahedron 1991, 47, 7635.
(5) Keck, G. E.; Cressman, E. N. K.; Enholm, E. J. J. Org. Chem. 1989, 54, 4345.
(6) (a) Jolly, R. S.; Livinghouse, T. J. Am. Chem. Soc. 1988, 110, 7536.
(b) Hart, D. J.; Tsai, Y.-M. J. Am. Chem. Soc. 1984, 106, 8209.
(7) Aoyagi, Y.; Manabe, T.; Ohta, A.; Kurihara, T.; Pang, G. L.; Yuhara, T. Tetrahedron 1996, 52, 869.
(8) Xing, D.; Yang, D. Org. Lett. 2013, 15, 4370.
(9) Lim, A. D.; Codelli, J. A.; Reisman, S. E. Chem. Sci. 2013, 4, 650.
(10) (a) Tufariello, J. J.; Lee, G. E. J. Am. Chem. Soc. 1980, 102, 373.
(b) Brandi, A.; Cardona, F.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem. - Eur. J. 2009, 15, 7808.
(11) Sugimoto, K.; Yamamoto, N.; Tominaga, D.; Matsuya, Y. Org. Lett. 2015, 17, 1320.
(12) (a) Yeh, M. C. P.; Fang, C. W.; Lin, H. H. Org. Lett. 2012, 14, 1830. (b) Yeh, M. C. P.; Liang, C. J.; Huang, T. L.; Hsu, H. J.; Tsau, Y. S. J. Org. Chem. 2013, 78, 5521.
(13) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46.
(14) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651.
(15) (a) Dischmann, M.; Frassetto, T.; Breuning, M. A.; Koert, U. Chem. - Eur. J. 2014, 20, 11300. (b) Wittig, G.; Haag, W. Chem. Ber. 1955, 88, 1654.
(16) (a) Barry, C. S.; Bushby, N.; Harding, J. R.; Hughes, R. A.; Parker, G. D.; Roe, R.; Willis, C. L. Chem. Commun. 2005, 3727. (b) Kumar, H. M. S.; Qazi, N. A.; Shafi, S.; Kumar, V. N.; Krishna, A. D.; Yadav, J. S. Tetrahedron Lett. 2005, 46, 7205. (c) Kataoka, K.; Ode, Y.; Matsumoto, M.; Nokami, J. Tetrahedron 2006, 62, 2471. (d) Olier, C.; Gastaldi, S.; Gil, G.; Bertrand, M. P. Tetrahedron Lett. 2007, 48, 7801. (e) Bahnck, K. B.; Rychnovsky, S. D. J. Am. Chem. Soc. 2008, 130, 13177. (f) Crosby, S. R.; Harding, J. R.; King, C. D.; Parker, G. D.; Willis, C. L. Org. Lett. 2002, 4, 577.
(17) (a) Mukaiyama, T.; Kobayashi, S.; Murakami, M. Chem. Lett. 1984, 1759. (b) Mukaiyama, T.; Kobayashi, S.; Murakami, M. Chem. Lett. 1985, 447. (c) Kobayashi, S.; Murakami, M.; Mukaiyama, T. Chem. Lett. 1985, 1535. (d) Ohshima, M.; Murakami, M.; Mukaiyama, T. Chem. Lett. 1985, 1871.
(18) (a) Bah, J.; Franzén, J. Chem. - Eur. J. 2014, 20, 1066. (b) Bah, J.; Naidu, V. R.; Teske, J.; Franzén, J. Adv. Synth. Catal. 2015, 375, 148.
(19) (a) Kobayashi, S.; Murakami, M.; Mukaiyama, T. Chem. Lett. 1985, 953. (b) Hashimoto, Y.; Mukaiyama, T. Chem. Lett. 1986, 755. (c) Hashimoto, Y.; Sugumi, H.; Okauchi, T.; Mukaiyama, T. Chem. Lett. 1987, 1691.
(20) (a) Pearson, A. J. Acc. Chem. Res. 1980, 13, 463. (b) Yeh, M. C. P.; Shieh, B. A.; Fu, H. W.; Tau, S. I.; Chuang, L. W. J. Am. Chem. Soc. 1993, 115, 5941.
(21) (a) Ichikawa, J.; Yokota, M.; Kudo, T.; Umezaki, S. Angew. Chem., Int. Ed. 2008, 47, 4870. (b) Lartia, R.; Bertrand, H.; TeuladeFichou, M. P. Synlett 2006, 610.
(22) Varin, M.; Barré, E.; Iorga, B.; Guillou, C. Chem. - Eur. J. 2008, 14, 6606.
(23) (a) Cresswell, A. J.; Davies, S. G.; Roberts, P. M.; Thomson, J. E. Chem. Rev. 2015, 115, 566. (b) Cui, J.; Jia, Q.; Feng, R. Z.; Liu, S. S.; He, T.; Zhang, C. Org. Lett. 2014, 16, 1442. (c) Kindt, S.; Heinrich, M. R. Chem. - Eur. J. 2014, 20, 15344. (d) Yuan, W.; Szabó, K. J. Angew. Chem., Int. Ed. 2015, 54, 8533.
(24) (a) Alloatti, D.; Giannini, G.; Cabri, W.; Lustrati, I.; Marzi, M.; Ciacci, A.; Gallo, G.; Tinti, M. O.; Marcellini, M.; Riccioni, T.; Guglielmi, M. B.; Carminati, P.; Pisano, C. J. Med. Chem. 2008, 51, 2708. (b) Niida, A.; Tomita, K.; Mizumoto, M.; Tanigaki, H.; Terada, T.; Oishi, S.; Otaka, A.; Inui, K.-i.; Fujii, N. Org. Lett. 2006, 8, 613. (c) Dutheuil, G.; Couve-Bonnaire, S.; Pannecoucke, X. Angew. Chem., Int. Ed. 2007, 46, 1290. (d) Hulin, B.; Cabral, S.; Lopaze, M. G.; Van Volkenburg, M. A.; Andrews, K. M.; Parker, J. C. Bioorg. Med. Chem. Lett. 2005, 15, 4770. (e) Van der Veken, P.; Senten, K.; Kertèsz, I.; De Meester, I.; Lambeir, A. M.; Maes, M. B.; Scharpé, S.; Haemers, A.; Augustyns, K. J. Med. Chem. 2005, 48, 1768. (f) Sciotti, R. J.; Pliushchev, M.; Wiedeman, P. E.; Balli, D.; Flamm, R.; Nilius, A. M.; Marsh, K.; Stolarik, D.; Jolly, R.; Ulrich, R.; Djuric, S. W. Bioorg. Med. Chem. Lett. 2002, 12, 2121.
(25) (a) Jung, M. E.; Brown, R. W. Tetrahedron Lett. 1978, 19, 2771. (b) Jung, M. E.; Speltz, L. M. J. Am. Chem. Soc. 1976, 98, 7882.
(26) Jin, T.; Himuro, M.; Yamamoto, Y. Angew. Chem., Int. Ed. 2009, 48, 5893.

[^0]: Received: August 31, 2015
 Published: October 12, 2015

